Metamath Proof Explorer


Theorem ovolicc2lem1

Description: Lemma for ovolicc2 . (Contributed by Mario Carneiro, 14-Jun-2014)

Ref Expression
Hypotheses ovolicc.1 φ A
ovolicc.2 φ B
ovolicc.3 φ A B
ovolicc2.4 S = seq 1 + abs F
ovolicc2.5 φ F : 2
ovolicc2.6 φ U 𝒫 ran . F Fin
ovolicc2.7 φ A B U
ovolicc2.8 φ G : U
ovolicc2.9 φ t U . F G t = t
Assertion ovolicc2lem1 φ X U P X P 1 st F G X < P P < 2 nd F G X

Proof

Step Hyp Ref Expression
1 ovolicc.1 φ A
2 ovolicc.2 φ B
3 ovolicc.3 φ A B
4 ovolicc2.4 S = seq 1 + abs F
5 ovolicc2.5 φ F : 2
6 ovolicc2.6 φ U 𝒫 ran . F Fin
7 ovolicc2.7 φ A B U
8 ovolicc2.8 φ G : U
9 ovolicc2.9 φ t U . F G t = t
10 inss2 2 2
11 fss F : 2 2 2 F : 2
12 5 10 11 sylancl φ F : 2
13 8 ffvelrnda φ X U G X
14 fvco3 F : 2 G X . F G X = . F G X
15 12 13 14 syl2an2r φ X U . F G X = . F G X
16 9 ralrimiva φ t U . F G t = t
17 2fveq3 t = X . F G t = . F G X
18 id t = X t = X
19 17 18 eqeq12d t = X . F G t = t . F G X = X
20 19 rspccva t U . F G t = t X U . F G X = X
21 16 20 sylan φ X U . F G X = X
22 12 adantr φ X U F : 2
23 22 13 ffvelrnd φ X U F G X 2
24 1st2nd2 F G X 2 F G X = 1 st F G X 2 nd F G X
25 23 24 syl φ X U F G X = 1 st F G X 2 nd F G X
26 25 fveq2d φ X U . F G X = . 1 st F G X 2 nd F G X
27 df-ov 1 st F G X 2 nd F G X = . 1 st F G X 2 nd F G X
28 26 27 eqtr4di φ X U . F G X = 1 st F G X 2 nd F G X
29 15 21 28 3eqtr3d φ X U X = 1 st F G X 2 nd F G X
30 29 eleq2d φ X U P X P 1 st F G X 2 nd F G X
31 xp1st F G X 2 1 st F G X
32 23 31 syl φ X U 1 st F G X
33 xp2nd F G X 2 2 nd F G X
34 23 33 syl φ X U 2 nd F G X
35 rexr 1 st F G X 1 st F G X *
36 rexr 2 nd F G X 2 nd F G X *
37 elioo2 1 st F G X * 2 nd F G X * P 1 st F G X 2 nd F G X P 1 st F G X < P P < 2 nd F G X
38 35 36 37 syl2an 1 st F G X 2 nd F G X P 1 st F G X 2 nd F G X P 1 st F G X < P P < 2 nd F G X
39 32 34 38 syl2anc φ X U P 1 st F G X 2 nd F G X P 1 st F G X < P P < 2 nd F G X
40 30 39 bitrd φ X U P X P 1 st F G X < P P < 2 nd F G X