Step |
Hyp |
Ref |
Expression |
1 |
|
ovolicc.1 |
|
2 |
|
ovolicc.2 |
|
3 |
|
ovolicc.3 |
|
4 |
|
ovolicc2.4 |
|
5 |
|
ovolicc2.5 |
|
6 |
|
ovolicc2.6 |
|
7 |
|
ovolicc2.7 |
|
8 |
|
ovolicc2.8 |
|
9 |
|
ovolicc2.9 |
|
10 |
|
ovolicc2.10 |
|
11 |
|
ovolicc2.11 |
|
12 |
|
ovolicc2.12 |
|
13 |
|
ovolicc2.13 |
|
14 |
|
ovolicc2.14 |
|
15 |
|
ovolicc2.15 |
|
16 |
|
ovolicc2.16 |
|
17 |
2
|
adantr |
|
18 |
|
inss2 |
|
19 |
|
fss |
|
20 |
5 18 19
|
sylancl |
|
21 |
20
|
adantr |
|
22 |
8
|
adantr |
|
23 |
|
nnuz |
|
24 |
|
1zzd |
|
25 |
23 15 24 14 11
|
algrf |
|
26 |
25
|
ffvelrnda |
|
27 |
|
ineq1 |
|
28 |
27
|
neeq1d |
|
29 |
28 10
|
elrab2 |
|
30 |
26 29
|
sylib |
|
31 |
30
|
simpld |
|
32 |
22 31
|
ffvelrnd |
|
33 |
21 32
|
ffvelrnd |
|
34 |
|
xp2nd |
|
35 |
33 34
|
syl |
|
36 |
17 35
|
ltnled |
|
37 |
|
simprl |
|
38 |
2
|
adantr |
|
39 |
30
|
adantrr |
|
40 |
39
|
simprd |
|
41 |
|
n0 |
|
42 |
40 41
|
sylib |
|
43 |
|
xp1st |
|
44 |
33 43
|
syl |
|
45 |
44
|
adantrr |
|
46 |
45
|
adantr |
|
47 |
|
simpr |
|
48 |
|
elin |
|
49 |
47 48
|
sylib |
|
50 |
49
|
simprd |
|
51 |
|
elicc2 |
|
52 |
1 2 51
|
syl2anc |
|
53 |
52
|
ad2antrr |
|
54 |
50 53
|
mpbid |
|
55 |
54
|
simp1d |
|
56 |
2
|
ad2antrr |
|
57 |
49
|
simpld |
|
58 |
39
|
simpld |
|
59 |
1 2 3 4 5 6 7 8 9
|
ovolicc2lem1 |
|
60 |
58 59
|
syldan |
|
61 |
60
|
adantr |
|
62 |
57 61
|
mpbid |
|
63 |
62
|
simp2d |
|
64 |
54
|
simp3d |
|
65 |
46 55 56 63 64
|
ltletrd |
|
66 |
42 65
|
exlimddv |
|
67 |
|
simprr |
|
68 |
1 2 3 4 5 6 7 8 9
|
ovolicc2lem1 |
|
69 |
58 68
|
syldan |
|
70 |
38 66 67 69
|
mpbir3and |
|
71 |
|
fveq2 |
|
72 |
71
|
eleq2d |
|
73 |
72 16
|
elrab2 |
|
74 |
37 70 73
|
sylanbrc |
|
75 |
74
|
expr |
|
76 |
36 75
|
sylbird |
|
77 |
76
|
con1d |
|
78 |
77
|
impr |
|