| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovolicc.1 |
|
| 2 |
|
ovolicc.2 |
|
| 3 |
|
ovolicc.3 |
|
| 4 |
|
ovolicc2.4 |
|
| 5 |
|
ovolicc2.5 |
|
| 6 |
|
ovolicc2.6 |
|
| 7 |
|
ovolicc2.7 |
|
| 8 |
|
ovolicc2.8 |
|
| 9 |
|
ovolicc2.9 |
|
| 10 |
|
ovolicc2.10 |
|
| 11 |
|
ovolicc2.11 |
|
| 12 |
|
ovolicc2.12 |
|
| 13 |
|
ovolicc2.13 |
|
| 14 |
|
ovolicc2.14 |
|
| 15 |
|
ovolicc2.15 |
|
| 16 |
|
ovolicc2.16 |
|
| 17 |
2
|
adantr |
|
| 18 |
|
inss2 |
|
| 19 |
|
fss |
|
| 20 |
5 18 19
|
sylancl |
|
| 21 |
20
|
adantr |
|
| 22 |
8
|
adantr |
|
| 23 |
|
nnuz |
|
| 24 |
|
1zzd |
|
| 25 |
23 15 24 14 11
|
algrf |
|
| 26 |
25
|
ffvelcdmda |
|
| 27 |
|
ineq1 |
|
| 28 |
27
|
neeq1d |
|
| 29 |
28 10
|
elrab2 |
|
| 30 |
26 29
|
sylib |
|
| 31 |
30
|
simpld |
|
| 32 |
22 31
|
ffvelcdmd |
|
| 33 |
21 32
|
ffvelcdmd |
|
| 34 |
|
xp2nd |
|
| 35 |
33 34
|
syl |
|
| 36 |
17 35
|
ltnled |
|
| 37 |
|
simprl |
|
| 38 |
2
|
adantr |
|
| 39 |
30
|
adantrr |
|
| 40 |
39
|
simprd |
|
| 41 |
|
n0 |
|
| 42 |
40 41
|
sylib |
|
| 43 |
|
xp1st |
|
| 44 |
33 43
|
syl |
|
| 45 |
44
|
adantrr |
|
| 46 |
45
|
adantr |
|
| 47 |
|
simpr |
|
| 48 |
|
elin |
|
| 49 |
47 48
|
sylib |
|
| 50 |
49
|
simprd |
|
| 51 |
|
elicc2 |
|
| 52 |
1 2 51
|
syl2anc |
|
| 53 |
52
|
ad2antrr |
|
| 54 |
50 53
|
mpbid |
|
| 55 |
54
|
simp1d |
|
| 56 |
2
|
ad2antrr |
|
| 57 |
49
|
simpld |
|
| 58 |
39
|
simpld |
|
| 59 |
1 2 3 4 5 6 7 8 9
|
ovolicc2lem1 |
|
| 60 |
58 59
|
syldan |
|
| 61 |
60
|
adantr |
|
| 62 |
57 61
|
mpbid |
|
| 63 |
62
|
simp2d |
|
| 64 |
54
|
simp3d |
|
| 65 |
46 55 56 63 64
|
ltletrd |
|
| 66 |
42 65
|
exlimddv |
|
| 67 |
|
simprr |
|
| 68 |
1 2 3 4 5 6 7 8 9
|
ovolicc2lem1 |
|
| 69 |
58 68
|
syldan |
|
| 70 |
38 66 67 69
|
mpbir3and |
|
| 71 |
|
fveq2 |
|
| 72 |
71
|
eleq2d |
|
| 73 |
72 16
|
elrab2 |
|
| 74 |
37 70 73
|
sylanbrc |
|
| 75 |
74
|
expr |
|
| 76 |
36 75
|
sylbird |
|
| 77 |
76
|
con1d |
|
| 78 |
77
|
impr |
|