Metamath Proof Explorer


Theorem ovolicc2lem3

Description: Lemma for ovolicc2 . (Contributed by Mario Carneiro, 14-Jun-2014)

Ref Expression
Hypotheses ovolicc.1 φA
ovolicc.2 φB
ovolicc.3 φAB
ovolicc2.4 S=seq1+absF
ovolicc2.5 φF:2
ovolicc2.6 φU𝒫ran.FFin
ovolicc2.7 φABU
ovolicc2.8 φG:U
ovolicc2.9 φtU.FGt=t
ovolicc2.10 T=uU|uAB
ovolicc2.11 φH:TT
ovolicc2.12 φtTif2ndFGtB2ndFGtBHt
ovolicc2.13 φAC
ovolicc2.14 φCT
ovolicc2.15 K=seq1H1st×C
ovolicc2.16 W=n|BKn
Assertion ovolicc2lem3 φNn|mWnmPn|mWnmN=P2ndFGKN=2ndFGKP

Proof

Step Hyp Ref Expression
1 ovolicc.1 φA
2 ovolicc.2 φB
3 ovolicc.3 φAB
4 ovolicc2.4 S=seq1+absF
5 ovolicc2.5 φF:2
6 ovolicc2.6 φU𝒫ran.FFin
7 ovolicc2.7 φABU
8 ovolicc2.8 φG:U
9 ovolicc2.9 φtU.FGt=t
10 ovolicc2.10 T=uU|uAB
11 ovolicc2.11 φH:TT
12 ovolicc2.12 φtTif2ndFGtB2ndFGtBHt
13 ovolicc2.13 φAC
14 ovolicc2.14 φCT
15 ovolicc2.15 K=seq1H1st×C
16 ovolicc2.16 W=n|BKn
17 2fveq3 y=kGKy=GKk
18 17 fveq2d y=kFGKy=FGKk
19 18 fveq2d y=k2ndFGKy=2ndFGKk
20 2fveq3 y=NGKy=GKN
21 20 fveq2d y=NFGKy=FGKN
22 21 fveq2d y=N2ndFGKy=2ndFGKN
23 2fveq3 y=PGKy=GKP
24 23 fveq2d y=PFGKy=FGKP
25 24 fveq2d y=P2ndFGKy=2ndFGKP
26 ssrab2 n|mWnm
27 nnssre
28 26 27 sstri n|mWnm
29 26 sseli yn|mWnmy
30 inss2 22
31 fss F:222F:2
32 5 30 31 sylancl φF:2
33 32 adantr φyF:2
34 8 adantr φyG:U
35 nnuz =1
36 1zzd φ1
37 35 15 36 14 11 algrf φK:T
38 37 adantr φyK:T
39 10 ssrab3 TU
40 fss K:TTUK:U
41 38 39 40 sylancl φyK:U
42 ffvelrn K:UyKyU
43 41 42 sylancom φyKyU
44 34 43 ffvelrnd φyGKy
45 33 44 ffvelrnd φyFGKy2
46 xp2nd FGKy22ndFGKy
47 45 46 syl φy2ndFGKy
48 29 47 sylan2 φyn|mWnm2ndFGKy
49 26 sseli kn|mWnmk
50 49 ad2antll φyn|mWnmkn|mWnmk
51 29 anim2i φyn|mWnmφy
52 51 adantrr φyn|mWnmkn|mWnmφy
53 breq1 n=knmkm
54 53 ralbidv n=kmWnmmWkm
55 54 elrab kn|mWnmkmWkm
56 55 simprbi kn|mWnmmWkm
57 56 ad2antll φyn|mWnmkn|mWnmmWkm
58 breq1 x=1xm1m
59 58 ralbidv x=1mWxmmW1m
60 breq2 x=1y<xy<1
61 2fveq3 x=1GKx=GK1
62 61 fveq2d x=1FGKx=FGK1
63 62 fveq2d x=12ndFGKx=2ndFGK1
64 63 breq2d x=12ndFGKy<2ndFGKx2ndFGKy<2ndFGK1
65 60 64 imbi12d x=1y<x2ndFGKy<2ndFGKxy<12ndFGKy<2ndFGK1
66 59 65 imbi12d x=1mWxmy<x2ndFGKy<2ndFGKxmW1my<12ndFGKy<2ndFGK1
67 66 imbi2d x=1φymWxmy<x2ndFGKy<2ndFGKxφymW1my<12ndFGKy<2ndFGK1
68 breq1 x=kxmkm
69 68 ralbidv x=kmWxmmWkm
70 breq2 x=ky<xy<k
71 2fveq3 x=kGKx=GKk
72 71 fveq2d x=kFGKx=FGKk
73 72 fveq2d x=k2ndFGKx=2ndFGKk
74 73 breq2d x=k2ndFGKy<2ndFGKx2ndFGKy<2ndFGKk
75 70 74 imbi12d x=ky<x2ndFGKy<2ndFGKxy<k2ndFGKy<2ndFGKk
76 69 75 imbi12d x=kmWxmy<x2ndFGKy<2ndFGKxmWkmy<k2ndFGKy<2ndFGKk
77 76 imbi2d x=kφymWxmy<x2ndFGKy<2ndFGKxφymWkmy<k2ndFGKy<2ndFGKk
78 breq1 x=k+1xmk+1m
79 78 ralbidv x=k+1mWxmmWk+1m
80 breq2 x=k+1y<xy<k+1
81 2fveq3 x=k+1GKx=GKk+1
82 81 fveq2d x=k+1FGKx=FGKk+1
83 82 fveq2d x=k+12ndFGKx=2ndFGKk+1
84 83 breq2d x=k+12ndFGKy<2ndFGKx2ndFGKy<2ndFGKk+1
85 80 84 imbi12d x=k+1y<x2ndFGKy<2ndFGKxy<k+12ndFGKy<2ndFGKk+1
86 79 85 imbi12d x=k+1mWxmy<x2ndFGKy<2ndFGKxmWk+1my<k+12ndFGKy<2ndFGKk+1
87 86 imbi2d x=k+1φymWxmy<x2ndFGKy<2ndFGKxφymWk+1my<k+12ndFGKy<2ndFGKk+1
88 nnnlt1 y¬y<1
89 88 adantl φy¬y<1
90 89 pm2.21d φyy<12ndFGKy<2ndFGK1
91 90 a1d φymW1my<12ndFGKy<2ndFGK1
92 nnre kk
93 92 adantr kmWk
94 93 lep1d kmWkk+1
95 peano2re kk+1
96 93 95 syl kmWk+1
97 16 ssrab3 W
98 97 27 sstri W
99 98 sseli mWm
100 99 adantl kmWm
101 letr kk+1mkk+1k+1mkm
102 93 96 100 101 syl3anc kmWkk+1k+1mkm
103 94 102 mpand kmWk+1mkm
104 103 ralimdva kmWk+1mmWkm
105 104 imim1d kmWkmy<k2ndFGKy<2ndFGKkmWk+1my<k2ndFGKy<2ndFGKk
106 105 adantl φykmWkmy<k2ndFGKy<2ndFGKkmWk+1my<k2ndFGKy<2ndFGKk
107 simplr φykmWk+1my
108 simprl φykmWk+1mk
109 nnleltp1 ykyky<k+1
110 107 108 109 syl2anc φykmWk+1myky<k+1
111 107 nnred φykmWk+1my
112 108 nnred φykmWk+1mk
113 111 112 leloed φykmWk+1myky<ky=k
114 110 113 bitr3d φykmWk+1my<k+1y<ky=k
115 simpll φykmWk+1mφ
116 ltp1 kk<k+1
117 ltnle kk+1k<k+1¬k+1k
118 95 117 mpdan kk<k+1¬k+1k
119 116 118 mpbid k¬k+1k
120 112 119 syl φykmWk+1m¬k+1k
121 breq2 m=kk+1mk+1k
122 121 rspccv mWk+1mkWk+1k
123 122 ad2antll φykmWk+1mkWk+1k
124 120 123 mtod φykmWk+1m¬kW
125 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ovolicc2lem2 φk¬kW2ndFGKkB
126 115 108 124 125 syl12anc φykmWk+1m2ndFGKkB
127 126 iftrued φykmWk+1mif2ndFGKkB2ndFGKkB=2ndFGKk
128 2fveq3 t=KkFGt=FGKk
129 128 fveq2d t=Kk2ndFGt=2ndFGKk
130 129 breq1d t=Kk2ndFGtB2ndFGKkB
131 130 129 ifbieq1d t=Kkif2ndFGtB2ndFGtB=if2ndFGKkB2ndFGKkB
132 fveq2 t=KkHt=HKk
133 131 132 eleq12d t=Kkif2ndFGtB2ndFGtBHtif2ndFGKkB2ndFGKkBHKk
134 12 ralrimiva φtTif2ndFGtB2ndFGtBHt
135 134 ad2antrr φykmWk+1mtTif2ndFGtB2ndFGtBHt
136 37 ad2antrr φykmWk+1mK:T
137 136 108 ffvelrnd φykmWk+1mKkT
138 133 135 137 rspcdva φykmWk+1mif2ndFGKkB2ndFGKkBHKk
139 127 138 eqeltrrd φykmWk+1m2ndFGKkHKk
140 35 15 36 14 11 algrp1 φkKk+1=HKk
141 140 ad2ant2r φykmWk+1mKk+1=HKk
142 139 141 eleqtrrd φykmWk+1m2ndFGKkKk+1
143 136 39 40 sylancl φykmWk+1mK:U
144 108 peano2nnd φykmWk+1mk+1
145 143 144 ffvelrnd φykmWk+1mKk+1U
146 1 2 3 4 5 6 7 8 9 ovolicc2lem1 φKk+1U2ndFGKkKk+12ndFGKk1stFGKk+1<2ndFGKk2ndFGKk<2ndFGKk+1
147 115 145 146 syl2anc φykmWk+1m2ndFGKkKk+12ndFGKk1stFGKk+1<2ndFGKk2ndFGKk<2ndFGKk+1
148 142 147 mpbid φykmWk+1m2ndFGKk1stFGKk+1<2ndFGKk2ndFGKk<2ndFGKk+1
149 148 simp3d φykmWk+1m2ndFGKk<2ndFGKk+1
150 47 adantr φykmWk+1m2ndFGKy
151 32 ad2antrr φykmWk+1mF:2
152 8 ad2antrr φykmWk+1mG:U
153 143 108 ffvelrnd φykmWk+1mKkU
154 152 153 ffvelrnd φykmWk+1mGKk
155 151 154 ffvelrnd φykmWk+1mFGKk2
156 xp2nd FGKk22ndFGKk
157 155 156 syl φykmWk+1m2ndFGKk
158 152 145 ffvelrnd φykmWk+1mGKk+1
159 151 158 ffvelrnd φykmWk+1mFGKk+12
160 xp2nd FGKk+122ndFGKk+1
161 159 160 syl φykmWk+1m2ndFGKk+1
162 lttr 2ndFGKy2ndFGKk2ndFGKk+12ndFGKy<2ndFGKk2ndFGKk<2ndFGKk+12ndFGKy<2ndFGKk+1
163 150 157 161 162 syl3anc φykmWk+1m2ndFGKy<2ndFGKk2ndFGKk<2ndFGKk+12ndFGKy<2ndFGKk+1
164 149 163 mpan2d φykmWk+1m2ndFGKy<2ndFGKk2ndFGKy<2ndFGKk+1
165 164 imim2d φykmWk+1my<k2ndFGKy<2ndFGKky<k2ndFGKy<2ndFGKk+1
166 165 com23 φykmWk+1my<ky<k2ndFGKy<2ndFGKk2ndFGKy<2ndFGKk+1
167 19 breq1d y=k2ndFGKy<2ndFGKk+12ndFGKk<2ndFGKk+1
168 149 167 syl5ibrcom φykmWk+1my=k2ndFGKy<2ndFGKk+1
169 168 a1dd φykmWk+1my=ky<k2ndFGKy<2ndFGKk2ndFGKy<2ndFGKk+1
170 166 169 jaod φykmWk+1my<ky=ky<k2ndFGKy<2ndFGKk2ndFGKy<2ndFGKk+1
171 114 170 sylbid φykmWk+1my<k+1y<k2ndFGKy<2ndFGKk2ndFGKy<2ndFGKk+1
172 171 com23 φykmWk+1my<k2ndFGKy<2ndFGKky<k+12ndFGKy<2ndFGKk+1
173 106 172 animpimp2impd kφymWkmy<k2ndFGKy<2ndFGKkφymWk+1my<k+12ndFGKy<2ndFGKk+1
174 67 77 87 77 91 173 nnind kφymWkmy<k2ndFGKy<2ndFGKk
175 50 52 57 174 syl3c φyn|mWnmkn|mWnmy<k2ndFGKy<2ndFGKk
176 19 22 25 28 48 175 eqord1 φNn|mWnmPn|mWnmN=P2ndFGKN=2ndFGKP