Metamath Proof Explorer


Theorem ovolicc2lem4

Description: Lemma for ovolicc2 . (Contributed by Mario Carneiro, 14-Jun-2014) (Revised by AV, 17-Sep-2020)

Ref Expression
Hypotheses ovolicc.1 φ A
ovolicc.2 φ B
ovolicc.3 φ A B
ovolicc2.4 S = seq 1 + abs F
ovolicc2.5 φ F : 2
ovolicc2.6 φ U 𝒫 ran . F Fin
ovolicc2.7 φ A B U
ovolicc2.8 φ G : U
ovolicc2.9 φ t U . F G t = t
ovolicc2.10 T = u U | u A B
ovolicc2.11 φ H : T T
ovolicc2.12 φ t T if 2 nd F G t B 2 nd F G t B H t
ovolicc2.13 φ A C
ovolicc2.14 φ C T
ovolicc2.15 K = seq 1 H 1 st × C
ovolicc2.16 W = n | B K n
ovolicc2.17 M = sup W <
Assertion ovolicc2lem4 φ B A sup ran S * <

Proof

Step Hyp Ref Expression
1 ovolicc.1 φ A
2 ovolicc.2 φ B
3 ovolicc.3 φ A B
4 ovolicc2.4 S = seq 1 + abs F
5 ovolicc2.5 φ F : 2
6 ovolicc2.6 φ U 𝒫 ran . F Fin
7 ovolicc2.7 φ A B U
8 ovolicc2.8 φ G : U
9 ovolicc2.9 φ t U . F G t = t
10 ovolicc2.10 T = u U | u A B
11 ovolicc2.11 φ H : T T
12 ovolicc2.12 φ t T if 2 nd F G t B 2 nd F G t B H t
13 ovolicc2.13 φ A C
14 ovolicc2.14 φ C T
15 ovolicc2.15 K = seq 1 H 1 st × C
16 ovolicc2.16 W = n | B K n
17 ovolicc2.17 M = sup W <
18 arch x z x < z
19 18 ad2antlr φ x y G K 1 M y x z x < z
20 df-ima G K 1 M = ran G K 1 M
21 nnuz = 1
22 1zzd φ 1
23 21 15 22 14 11 algrf φ K : T
24 10 ssrab3 T U
25 fss K : T T U K : U
26 23 24 25 sylancl φ K : U
27 fco G : U K : U G K :
28 8 26 27 syl2anc φ G K :
29 fz1ssnn 1 M
30 fssres G K : 1 M G K 1 M : 1 M
31 28 29 30 sylancl φ G K 1 M : 1 M
32 31 frnd φ ran G K 1 M
33 20 32 eqsstrid φ G K 1 M
34 nnssre
35 33 34 sstrdi φ G K 1 M
36 35 ad3antrrr φ x z y G K 1 M G K 1 M
37 simpr φ x z y G K 1 M y G K 1 M
38 36 37 sseldd φ x z y G K 1 M y
39 simpllr φ x z y G K 1 M x
40 nnre z z
41 40 ad2antlr φ x z y G K 1 M z
42 lelttr y x z y x x < z y < z
43 38 39 41 42 syl3anc φ x z y G K 1 M y x x < z y < z
44 43 ancomsd φ x z y G K 1 M x < z y x y < z
45 44 expdimp φ x z y G K 1 M x < z y x y < z
46 45 an32s φ x z x < z y G K 1 M y x y < z
47 46 ralimdva φ x z x < z y G K 1 M y x y G K 1 M y < z
48 47 impancom φ x z y G K 1 M y x x < z y G K 1 M y < z
49 48 an32s φ x y G K 1 M y x z x < z y G K 1 M y < z
50 49 reximdva φ x y G K 1 M y x z x < z z y G K 1 M y < z
51 19 50 mpd φ x y G K 1 M y x z y G K 1 M y < z
52 fzfid φ 1 M Fin
53 fvres i 1 M G K 1 M i = G K i
54 53 adantl φ i 1 M G K 1 M i = G K i
55 elfznn i 1 M i
56 fvco3 K : T i G K i = G K i
57 23 55 56 syl2an φ i 1 M G K i = G K i
58 54 57 eqtrd φ i 1 M G K 1 M i = G K i
59 58 adantrr φ i 1 M j 1 M G K 1 M i = G K i
60 fvres j 1 M G K 1 M j = G K j
61 60 ad2antll φ i 1 M j 1 M G K 1 M j = G K j
62 elfznn j 1 M j
63 62 adantl i 1 M j 1 M j
64 fvco3 K : T j G K j = G K j
65 23 63 64 syl2an φ i 1 M j 1 M G K j = G K j
66 61 65 eqtrd φ i 1 M j 1 M G K 1 M j = G K j
67 59 66 eqeq12d φ i 1 M j 1 M G K 1 M i = G K 1 M j G K i = G K j
68 2fveq3 G K i = G K j 2 nd F G K i = 2 nd F G K j
69 29 a1i φ 1 M
70 elfznn n 1 M n
71 70 ad2antlr φ n 1 M m W n
72 71 nnred φ n 1 M m W n
73 16 ssrab3 W
74 73 34 sstri W
75 73 21 sseqtri W 1
76 nnnfi ¬ Fin
77 6 elin2d φ U Fin
78 ssfi U Fin T U T Fin
79 77 24 78 sylancl φ T Fin
80 79 adantr φ W = T Fin
81 23 adantr φ W = K : T
82 2fveq3 K i = K j F G K i = F G K j
83 82 fveq2d K i = K j 2 nd F G K i = 2 nd F G K j
84 simpll φ W = i j φ
85 simprl φ W = i j i
86 ral0 m n m
87 simplr φ W = i j W =
88 87 raleqdv φ W = i j m W n m m n m
89 86 88 mpbiri φ W = i j m W n m
90 89 ralrimivw φ W = i j n m W n m
91 rabid2 = n | m W n m n m W n m
92 90 91 sylibr φ W = i j = n | m W n m
93 85 92 eleqtrd φ W = i j i n | m W n m
94 simprr φ W = i j j
95 94 92 eleqtrd φ W = i j j n | m W n m
96 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ovolicc2lem3 φ i n | m W n m j n | m W n m i = j 2 nd F G K i = 2 nd F G K j
97 84 93 95 96 syl12anc φ W = i j i = j 2 nd F G K i = 2 nd F G K j
98 83 97 syl5ibr φ W = i j K i = K j i = j
99 98 ralrimivva φ W = i j K i = K j i = j
100 dff13 K : 1-1 T K : T i j K i = K j i = j
101 81 99 100 sylanbrc φ W = K : 1-1 T
102 f1domg T Fin K : 1-1 T T
103 80 101 102 sylc φ W = T
104 domfi T Fin T Fin
105 79 103 104 syl2an2r φ W = Fin
106 105 ex φ W = Fin
107 106 necon3bd φ ¬ Fin W
108 76 107 mpi φ W
109 infssuzcl W 1 W sup W < W
110 75 108 109 sylancr φ sup W < W
111 17 110 eqeltrid φ M W
112 74 111 sselid φ M
113 112 ad2antrr φ n 1 M m W M
114 74 sseli m W m
115 114 adantl φ n 1 M m W m
116 elfzle2 n 1 M n M
117 116 ad2antlr φ n 1 M m W n M
118 infssuzle W 1 m W sup W < m
119 75 118 mpan m W sup W < m
120 17 119 eqbrtrid m W M m
121 120 adantl φ n 1 M m W M m
122 72 113 115 117 121 letrd φ n 1 M m W n m
123 122 ralrimiva φ n 1 M m W n m
124 69 123 ssrabdv φ 1 M n | m W n m
125 124 adantr φ i 1 M j 1 M 1 M n | m W n m
126 simprl φ i 1 M j 1 M i 1 M
127 125 126 sseldd φ i 1 M j 1 M i n | m W n m
128 simprr φ i 1 M j 1 M j 1 M
129 125 128 sseldd φ i 1 M j 1 M j n | m W n m
130 127 129 jca φ i 1 M j 1 M i n | m W n m j n | m W n m
131 130 96 syldan φ i 1 M j 1 M i = j 2 nd F G K i = 2 nd F G K j
132 68 131 syl5ibr φ i 1 M j 1 M G K i = G K j i = j
133 67 132 sylbid φ i 1 M j 1 M G K 1 M i = G K 1 M j i = j
134 133 ralrimivva φ i 1 M j 1 M G K 1 M i = G K 1 M j i = j
135 dff13 G K 1 M : 1 M 1-1 G K 1 M : 1 M i 1 M j 1 M G K 1 M i = G K 1 M j i = j
136 31 134 135 sylanbrc φ G K 1 M : 1 M 1-1
137 f1f1orn G K 1 M : 1 M 1-1 G K 1 M : 1 M 1-1 onto ran G K 1 M
138 136 137 syl φ G K 1 M : 1 M 1-1 onto ran G K 1 M
139 f1oeq3 G K 1 M = ran G K 1 M G K 1 M : 1 M 1-1 onto G K 1 M G K 1 M : 1 M 1-1 onto ran G K 1 M
140 20 139 ax-mp G K 1 M : 1 M 1-1 onto G K 1 M G K 1 M : 1 M 1-1 onto ran G K 1 M
141 138 140 sylibr φ G K 1 M : 1 M 1-1 onto G K 1 M
142 f1ofo G K 1 M : 1 M 1-1 onto G K 1 M G K 1 M : 1 M onto G K 1 M
143 141 142 syl φ G K 1 M : 1 M onto G K 1 M
144 fofi 1 M Fin G K 1 M : 1 M onto G K 1 M G K 1 M Fin
145 52 143 144 syl2anc φ G K 1 M Fin
146 fimaxre2 G K 1 M G K 1 M Fin x y G K 1 M y x
147 35 145 146 syl2anc φ x y G K 1 M y x
148 51 147 r19.29a φ z y G K 1 M y < z
149 2 1 resubcld φ B A
150 149 rexrd φ B A *
151 150 adantr φ z y G K 1 M y < z B A *
152 fzfid φ 1 z Fin
153 elfznn j 1 z j
154 eqid abs F = abs F
155 154 ovolfsf F : 2 abs F : 0 +∞
156 5 155 syl φ abs F : 0 +∞
157 156 ffvelrnda φ j abs F j 0 +∞
158 153 157 sylan2 φ j 1 z abs F j 0 +∞
159 elrege0 abs F j 0 +∞ abs F j 0 abs F j
160 158 159 sylib φ j 1 z abs F j 0 abs F j
161 160 simpld φ j 1 z abs F j
162 152 161 fsumrecl φ j = 1 z abs F j
163 162 adantr φ z y G K 1 M y < z j = 1 z abs F j
164 163 rexrd φ z y G K 1 M y < z j = 1 z abs F j *
165 154 4 ovolsf F : 2 S : 0 +∞
166 5 165 syl φ S : 0 +∞
167 166 frnd φ ran S 0 +∞
168 rge0ssre 0 +∞
169 167 168 sstrdi φ ran S
170 ressxr *
171 169 170 sstrdi φ ran S *
172 supxrcl ran S * sup ran S * < *
173 171 172 syl φ sup ran S * < *
174 173 adantr φ z y G K 1 M y < z sup ran S * < *
175 149 adantr φ z y G K 1 M y < z B A
176 33 sselda φ j G K 1 M j
177 168 157 sselid φ j abs F j
178 176 177 syldan φ j G K 1 M abs F j
179 145 178 fsumrecl φ j G K 1 M abs F j
180 179 adantr φ z y G K 1 M y < z j G K 1 M abs F j
181 inss2 2 2
182 fss F : 2 2 2 F : 2
183 5 181 182 sylancl φ F : 2
184 73 111 sselid φ M
185 26 184 ffvelrnd φ K M U
186 8 185 ffvelrnd φ G K M
187 183 186 ffvelrnd φ F G K M 2
188 xp2nd F G K M 2 2 nd F G K M
189 187 188 syl φ 2 nd F G K M
190 24 14 sselid φ C U
191 8 190 ffvelrnd φ G C
192 183 191 ffvelrnd φ F G C 2
193 xp1st F G C 2 1 st F G C
194 192 193 syl φ 1 st F G C
195 189 194 resubcld φ 2 nd F G K M 1 st F G C
196 fveq2 j = G K i abs F j = abs F G K i
197 177 recnd φ j abs F j
198 176 197 syldan φ j G K 1 M abs F j
199 196 52 141 58 198 fsumf1o φ j G K 1 M abs F j = i = 1 M abs F G K i
200 8 adantr φ i 1 M G : U
201 ffvelrn K : U i K i U
202 26 55 201 syl2an φ i 1 M K i U
203 200 202 ffvelrnd φ i 1 M G K i
204 154 ovolfsval F : 2 G K i abs F G K i = 2 nd F G K i 1 st F G K i
205 5 203 204 syl2an2r φ i 1 M abs F G K i = 2 nd F G K i 1 st F G K i
206 205 sumeq2dv φ i = 1 M abs F G K i = i = 1 M 2 nd F G K i 1 st F G K i
207 183 adantr φ i F : 2
208 8 adantr φ i G : U
209 26 ffvelrnda φ i K i U
210 208 209 ffvelrnd φ i G K i
211 207 210 ffvelrnd φ i F G K i 2
212 xp2nd F G K i 2 2 nd F G K i
213 211 212 syl φ i 2 nd F G K i
214 55 213 sylan2 φ i 1 M 2 nd F G K i
215 214 recnd φ i 1 M 2 nd F G K i
216 183 adantr φ i 1 M F : 2
217 216 203 ffvelrnd φ i 1 M F G K i 2
218 xp1st F G K i 2 1 st F G K i
219 217 218 syl φ i 1 M 1 st F G K i
220 219 recnd φ i 1 M 1 st F G K i
221 52 215 220 fsumsub φ i = 1 M 2 nd F G K i 1 st F G K i = i = 1 M 2 nd F G K i i = 1 M 1 st F G K i
222 fzfid φ 1 M 1 Fin
223 elfznn i 1 M 1 i
224 223 213 sylan2 φ i 1 M 1 2 nd F G K i
225 222 224 fsumrecl φ i = 1 M 1 2 nd F G K i
226 225 recnd φ i = 1 M 1 2 nd F G K i
227 189 recnd φ 2 nd F G K M
228 75 111 sselid φ M 1
229 2fveq3 i = M G K i = G K M
230 229 fveq2d i = M F G K i = F G K M
231 230 fveq2d i = M 2 nd F G K i = 2 nd F G K M
232 228 215 231 fsumm1 φ i = 1 M 2 nd F G K i = i = 1 M 1 2 nd F G K i + 2 nd F G K M
233 226 227 232 comraddd φ i = 1 M 2 nd F G K i = 2 nd F G K M + i = 1 M 1 2 nd F G K i
234 2fveq3 i = 1 G K i = G K 1
235 234 fveq2d i = 1 F G K i = F G K 1
236 235 fveq2d i = 1 1 st F G K i = 1 st F G K 1
237 228 220 236 fsum1p φ i = 1 M 1 st F G K i = 1 st F G K 1 + i = 1 + 1 M 1 st F G K i
238 21 15 22 14 algr0 φ K 1 = C
239 238 fveq2d φ G K 1 = G C
240 239 fveq2d φ F G K 1 = F G C
241 240 fveq2d φ 1 st F G K 1 = 1 st F G C
242 22 peano2zd φ 1 + 1
243 184 nnzd φ M
244 1z 1
245 fzp1ss 1 1 + 1 M 1 M
246 244 245 mp1i φ 1 + 1 M 1 M
247 246 sselda φ i 1 + 1 M i 1 M
248 247 220 syldan φ i 1 + 1 M 1 st F G K i
249 2fveq3 i = j + 1 G K i = G K j + 1
250 249 fveq2d i = j + 1 F G K i = F G K j + 1
251 250 fveq2d i = j + 1 1 st F G K i = 1 st F G K j + 1
252 22 242 243 248 251 fsumshftm φ i = 1 + 1 M 1 st F G K i = j = 1 + 1 - 1 M 1 1 st F G K j + 1
253 ax-1cn 1
254 253 253 pncan3oi 1 + 1 - 1 = 1
255 254 oveq1i 1 + 1 - 1 M 1 = 1 M 1
256 255 sumeq1i j = 1 + 1 - 1 M 1 1 st F G K j + 1 = j = 1 M 1 1 st F G K j + 1
257 fvoveq1 j = i K j + 1 = K i + 1
258 257 fveq2d j = i G K j + 1 = G K i + 1
259 258 fveq2d j = i F G K j + 1 = F G K i + 1
260 259 fveq2d j = i 1 st F G K j + 1 = 1 st F G K i + 1
261 260 cbvsumv j = 1 M 1 1 st F G K j + 1 = i = 1 M 1 1 st F G K i + 1
262 256 261 eqtri j = 1 + 1 - 1 M 1 1 st F G K j + 1 = i = 1 M 1 1 st F G K i + 1
263 252 262 eqtrdi φ i = 1 + 1 M 1 st F G K i = i = 1 M 1 1 st F G K i + 1
264 241 263 oveq12d φ 1 st F G K 1 + i = 1 + 1 M 1 st F G K i = 1 st F G C + i = 1 M 1 1 st F G K i + 1
265 237 264 eqtrd φ i = 1 M 1 st F G K i = 1 st F G C + i = 1 M 1 1 st F G K i + 1
266 233 265 oveq12d φ i = 1 M 2 nd F G K i i = 1 M 1 st F G K i = 2 nd F G K M + i = 1 M 1 2 nd F G K i - 1 st F G C + i = 1 M 1 1 st F G K i + 1
267 194 recnd φ 1 st F G C
268 peano2nn i i + 1
269 ffvelrn K : U i + 1 K i + 1 U
270 26 268 269 syl2an φ i K i + 1 U
271 208 270 ffvelrnd φ i G K i + 1
272 207 271 ffvelrnd φ i F G K i + 1 2
273 xp1st F G K i + 1 2 1 st F G K i + 1
274 272 273 syl φ i 1 st F G K i + 1
275 223 274 sylan2 φ i 1 M 1 1 st F G K i + 1
276 222 275 fsumrecl φ i = 1 M 1 1 st F G K i + 1
277 276 recnd φ i = 1 M 1 1 st F G K i + 1
278 227 226 267 277 addsub4d φ 2 nd F G K M + i = 1 M 1 2 nd F G K i - 1 st F G C + i = 1 M 1 1 st F G K i + 1 = 2 nd F G K M 1 st F G C + i = 1 M 1 2 nd F G K i - i = 1 M 1 1 st F G K i + 1
279 221 266 278 3eqtrd φ i = 1 M 2 nd F G K i 1 st F G K i = 2 nd F G K M 1 st F G C + i = 1 M 1 2 nd F G K i - i = 1 M 1 1 st F G K i + 1
280 199 206 279 3eqtrd φ j G K 1 M abs F j = 2 nd F G K M 1 st F G C + i = 1 M 1 2 nd F G K i - i = 1 M 1 1 st F G K i + 1
281 280 179 eqeltrrd φ 2 nd F G K M 1 st F G C + i = 1 M 1 2 nd F G K i - i = 1 M 1 1 st F G K i + 1
282 fveq2 n = M K n = K M
283 282 eleq2d n = M B K n B K M
284 283 16 elrab2 M W M B K M
285 111 284 sylib φ M B K M
286 285 simprd φ B K M
287 1 2 3 4 5 6 7 8 9 ovolicc2lem1 φ K M U B K M B 1 st F G K M < B B < 2 nd F G K M
288 185 287 mpdan φ B K M B 1 st F G K M < B B < 2 nd F G K M
289 286 288 mpbid φ B 1 st F G K M < B B < 2 nd F G K M
290 289 simp3d φ B < 2 nd F G K M
291 1 2 3 4 5 6 7 8 9 ovolicc2lem1 φ C U A C A 1 st F G C < A A < 2 nd F G C
292 190 291 mpdan φ A C A 1 st F G C < A A < 2 nd F G C
293 13 292 mpbid φ A 1 st F G C < A A < 2 nd F G C
294 293 simp2d φ 1 st F G C < A
295 2 194 189 1 290 294 lt2subd φ B A < 2 nd F G K M 1 st F G C
296 149 195 295 ltled φ B A 2 nd F G K M 1 st F G C
297 223 adantl φ i 1 M 1 i
298 simpr φ i 1 M 1 i 1 M 1
299 243 adantr φ i 1 M 1 M
300 elfzm11 1 M i 1 M 1 i 1 i i < M
301 244 299 300 sylancr φ i 1 M 1 i 1 M 1 i 1 i i < M
302 298 301 mpbid φ i 1 M 1 i 1 i i < M
303 302 simp3d φ i 1 M 1 i < M
304 297 nnred φ i 1 M 1 i
305 112 adantr φ i 1 M 1 M
306 304 305 ltnled φ i 1 M 1 i < M ¬ M i
307 303 306 mpbid φ i 1 M 1 ¬ M i
308 infssuzle W 1 i W sup W < i
309 75 308 mpan i W sup W < i
310 17 309 eqbrtrid i W M i
311 307 310 nsyl φ i 1 M 1 ¬ i W
312 297 311 jca φ i 1 M 1 i ¬ i W
313 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ovolicc2lem2 φ i ¬ i W 2 nd F G K i B
314 312 313 syldan φ i 1 M 1 2 nd F G K i B
315 314 iftrued φ i 1 M 1 if 2 nd F G K i B 2 nd F G K i B = 2 nd F G K i
316 2fveq3 t = K i F G t = F G K i
317 316 fveq2d t = K i 2 nd F G t = 2 nd F G K i
318 317 breq1d t = K i 2 nd F G t B 2 nd F G K i B
319 318 317 ifbieq1d t = K i if 2 nd F G t B 2 nd F G t B = if 2 nd F G K i B 2 nd F G K i B
320 fveq2 t = K i H t = H K i
321 319 320 eleq12d t = K i if 2 nd F G t B 2 nd F G t B H t if 2 nd F G K i B 2 nd F G K i B H K i
322 12 ralrimiva φ t T if 2 nd F G t B 2 nd F G t B H t
323 322 adantr φ i 1 M 1 t T if 2 nd F G t B 2 nd F G t B H t
324 ffvelrn K : T i K i T
325 23 223 324 syl2an φ i 1 M 1 K i T
326 321 323 325 rspcdva φ i 1 M 1 if 2 nd F G K i B 2 nd F G K i B H K i
327 315 326 eqeltrrd φ i 1 M 1 2 nd F G K i H K i
328 21 15 22 14 11 algrp1 φ i K i + 1 = H K i
329 223 328 sylan2 φ i 1 M 1 K i + 1 = H K i
330 327 329 eleqtrrd φ i 1 M 1 2 nd F G K i K i + 1
331 223 270 sylan2 φ i 1 M 1 K i + 1 U
332 1 2 3 4 5 6 7 8 9 ovolicc2lem1 φ K i + 1 U 2 nd F G K i K i + 1 2 nd F G K i 1 st F G K i + 1 < 2 nd F G K i 2 nd F G K i < 2 nd F G K i + 1
333 331 332 syldan φ i 1 M 1 2 nd F G K i K i + 1 2 nd F G K i 1 st F G K i + 1 < 2 nd F G K i 2 nd F G K i < 2 nd F G K i + 1
334 330 333 mpbid φ i 1 M 1 2 nd F G K i 1 st F G K i + 1 < 2 nd F G K i 2 nd F G K i < 2 nd F G K i + 1
335 334 simp2d φ i 1 M 1 1 st F G K i + 1 < 2 nd F G K i
336 275 224 335 ltled φ i 1 M 1 1 st F G K i + 1 2 nd F G K i
337 222 275 224 336 fsumle φ i = 1 M 1 1 st F G K i + 1 i = 1 M 1 2 nd F G K i
338 225 276 subge0d φ 0 i = 1 M 1 2 nd F G K i i = 1 M 1 1 st F G K i + 1 i = 1 M 1 1 st F G K i + 1 i = 1 M 1 2 nd F G K i
339 337 338 mpbird φ 0 i = 1 M 1 2 nd F G K i i = 1 M 1 1 st F G K i + 1
340 225 276 resubcld φ i = 1 M 1 2 nd F G K i i = 1 M 1 1 st F G K i + 1
341 195 340 addge01d φ 0 i = 1 M 1 2 nd F G K i i = 1 M 1 1 st F G K i + 1 2 nd F G K M 1 st F G C 2 nd F G K M 1 st F G C + i = 1 M 1 2 nd F G K i - i = 1 M 1 1 st F G K i + 1
342 339 341 mpbid φ 2 nd F G K M 1 st F G C 2 nd F G K M 1 st F G C + i = 1 M 1 2 nd F G K i - i = 1 M 1 1 st F G K i + 1
343 149 195 281 296 342 letrd φ B A 2 nd F G K M 1 st F G C + i = 1 M 1 2 nd F G K i - i = 1 M 1 1 st F G K i + 1
344 343 280 breqtrrd φ B A j G K 1 M abs F j
345 344 adantr φ z y G K 1 M y < z B A j G K 1 M abs F j
346 fzfid φ z y G K 1 M y < z 1 z Fin
347 161 adantlr φ z y G K 1 M y < z j 1 z abs F j
348 160 simprd φ j 1 z 0 abs F j
349 348 adantlr φ z y G K 1 M y < z j 1 z 0 abs F j
350 33 adantr φ z G K 1 M
351 350 sselda φ z y G K 1 M y
352 351 nnred φ z y G K 1 M y
353 40 ad2antlr φ z y G K 1 M z
354 ltle y z y < z y z
355 352 353 354 syl2anc φ z y G K 1 M y < z y z
356 351 21 eleqtrdi φ z y G K 1 M y 1
357 nnz z z
358 357 ad2antlr φ z y G K 1 M z
359 elfz5 y 1 z y 1 z y z
360 356 358 359 syl2anc φ z y G K 1 M y 1 z y z
361 355 360 sylibrd φ z y G K 1 M y < z y 1 z
362 361 ralimdva φ z y G K 1 M y < z y G K 1 M y 1 z
363 362 impr φ z y G K 1 M y < z y G K 1 M y 1 z
364 dfss3 G K 1 M 1 z y G K 1 M y 1 z
365 363 364 sylibr φ z y G K 1 M y < z G K 1 M 1 z
366 346 347 349 365 fsumless φ z y G K 1 M y < z j G K 1 M abs F j j = 1 z abs F j
367 175 180 163 345 366 letrd φ z y G K 1 M y < z B A j = 1 z abs F j
368 eqidd φ z y G K 1 M y < z j 1 z abs F j = abs F j
369 simprl φ z y G K 1 M y < z z
370 369 21 eleqtrdi φ z y G K 1 M y < z z 1
371 347 recnd φ z y G K 1 M y < z j 1 z abs F j
372 368 370 371 fsumser φ z y G K 1 M y < z j = 1 z abs F j = seq 1 + abs F z
373 4 fveq1i S z = seq 1 + abs F z
374 372 373 eqtr4di φ z y G K 1 M y < z j = 1 z abs F j = S z
375 166 ffnd φ S Fn
376 fnfvelrn S Fn z S z ran S
377 375 369 376 syl2an2r φ z y G K 1 M y < z S z ran S
378 supxrub ran S * S z ran S S z sup ran S * <
379 171 377 378 syl2an2r φ z y G K 1 M y < z S z sup ran S * <
380 374 379 eqbrtrd φ z y G K 1 M y < z j = 1 z abs F j sup ran S * <
381 151 164 174 367 380 xrletrd φ z y G K 1 M y < z B A sup ran S * <
382 148 381 rexlimddv φ B A sup ran S * <