Metamath Proof Explorer


Theorem ovolicc2lem5

Description: Lemma for ovolicc2 . (Contributed by Mario Carneiro, 14-Jun-2014)

Ref Expression
Hypotheses ovolicc.1 φ A
ovolicc.2 φ B
ovolicc.3 φ A B
ovolicc2.4 S = seq 1 + abs F
ovolicc2.5 φ F : 2
ovolicc2.6 φ U 𝒫 ran . F Fin
ovolicc2.7 φ A B U
ovolicc2.8 φ G : U
ovolicc2.9 φ t U . F G t = t
ovolicc2.10 T = u U | u A B
Assertion ovolicc2lem5 φ B A sup ran S * <

Proof

Step Hyp Ref Expression
1 ovolicc.1 φ A
2 ovolicc.2 φ B
3 ovolicc.3 φ A B
4 ovolicc2.4 S = seq 1 + abs F
5 ovolicc2.5 φ F : 2
6 ovolicc2.6 φ U 𝒫 ran . F Fin
7 ovolicc2.7 φ A B U
8 ovolicc2.8 φ G : U
9 ovolicc2.9 φ t U . F G t = t
10 ovolicc2.10 T = u U | u A B
11 1 rexrd φ A *
12 2 rexrd φ B *
13 lbicc2 A * B * A B A A B
14 11 12 3 13 syl3anc φ A A B
15 7 14 sseldd φ A U
16 eluni2 A U z U A z
17 15 16 sylib φ z U A z
18 6 elin2d φ U Fin
19 10 ssrab3 T U
20 ssfi U Fin T U T Fin
21 18 19 20 sylancl φ T Fin
22 7 adantr φ t T A B U
23 ineq1 u = t u A B = t A B
24 23 neeq1d u = t u A B t A B
25 24 10 elrab2 t T t U t A B
26 25 simplbi t T t U
27 ffvelrn G : U t U G t
28 8 26 27 syl2an φ t T G t
29 5 ffvelrnda φ G t F G t 2
30 28 29 syldan φ t T F G t 2
31 30 elin2d φ t T F G t 2
32 xp2nd F G t 2 2 nd F G t
33 31 32 syl φ t T 2 nd F G t
34 2 adantr φ t T B
35 33 34 ifcld φ t T if 2 nd F G t B 2 nd F G t B
36 25 simprbi t T t A B
37 36 adantl φ t T t A B
38 n0 t A B y y t A B
39 37 38 sylib φ t T y y t A B
40 1 adantr φ t T y t A B A
41 simprr φ t T y t A B y t A B
42 41 elin2d φ t T y t A B y A B
43 2 adantr φ t T y t A B B
44 elicc2 A B y A B y A y y B
45 1 43 44 syl2an2r φ t T y t A B y A B y A y y B
46 42 45 mpbid φ t T y t A B y A y y B
47 46 simp1d φ t T y t A B y
48 31 adantrr φ t T y t A B F G t 2
49 48 32 syl φ t T y t A B 2 nd F G t
50 46 simp2d φ t T y t A B A y
51 41 elin1d φ t T y t A B y t
52 28 adantrr φ t T y t A B G t
53 fvco3 F : 2 G t . F G t = . F G t
54 5 52 53 syl2an2r φ t T y t A B . F G t = . F G t
55 26 9 sylan2 φ t T . F G t = t
56 55 adantrr φ t T y t A B . F G t = t
57 1st2nd2 F G t 2 F G t = 1 st F G t 2 nd F G t
58 48 57 syl φ t T y t A B F G t = 1 st F G t 2 nd F G t
59 58 fveq2d φ t T y t A B . F G t = . 1 st F G t 2 nd F G t
60 df-ov 1 st F G t 2 nd F G t = . 1 st F G t 2 nd F G t
61 59 60 eqtr4di φ t T y t A B . F G t = 1 st F G t 2 nd F G t
62 54 56 61 3eqtr3d φ t T y t A B t = 1 st F G t 2 nd F G t
63 51 62 eleqtrd φ t T y t A B y 1 st F G t 2 nd F G t
64 xp1st F G t 2 1 st F G t
65 48 64 syl φ t T y t A B 1 st F G t
66 rexr 1 st F G t 1 st F G t *
67 rexr 2 nd F G t 2 nd F G t *
68 elioo2 1 st F G t * 2 nd F G t * y 1 st F G t 2 nd F G t y 1 st F G t < y y < 2 nd F G t
69 66 67 68 syl2an 1 st F G t 2 nd F G t y 1 st F G t 2 nd F G t y 1 st F G t < y y < 2 nd F G t
70 65 49 69 syl2anc φ t T y t A B y 1 st F G t 2 nd F G t y 1 st F G t < y y < 2 nd F G t
71 63 70 mpbid φ t T y t A B y 1 st F G t < y y < 2 nd F G t
72 71 simp3d φ t T y t A B y < 2 nd F G t
73 47 49 72 ltled φ t T y t A B y 2 nd F G t
74 40 47 49 50 73 letrd φ t T y t A B A 2 nd F G t
75 74 expr φ t T y t A B A 2 nd F G t
76 75 exlimdv φ t T y y t A B A 2 nd F G t
77 39 76 mpd φ t T A 2 nd F G t
78 3 adantr φ t T A B
79 breq2 2 nd F G t = if 2 nd F G t B 2 nd F G t B A 2 nd F G t A if 2 nd F G t B 2 nd F G t B
80 breq2 B = if 2 nd F G t B 2 nd F G t B A B A if 2 nd F G t B 2 nd F G t B
81 79 80 ifboth A 2 nd F G t A B A if 2 nd F G t B 2 nd F G t B
82 77 78 81 syl2anc φ t T A if 2 nd F G t B 2 nd F G t B
83 min2 2 nd F G t B if 2 nd F G t B 2 nd F G t B B
84 33 34 83 syl2anc φ t T if 2 nd F G t B 2 nd F G t B B
85 elicc2 A B if 2 nd F G t B 2 nd F G t B A B if 2 nd F G t B 2 nd F G t B A if 2 nd F G t B 2 nd F G t B if 2 nd F G t B 2 nd F G t B B
86 1 2 85 syl2anc φ if 2 nd F G t B 2 nd F G t B A B if 2 nd F G t B 2 nd F G t B A if 2 nd F G t B 2 nd F G t B if 2 nd F G t B 2 nd F G t B B
87 86 adantr φ t T if 2 nd F G t B 2 nd F G t B A B if 2 nd F G t B 2 nd F G t B A if 2 nd F G t B 2 nd F G t B if 2 nd F G t B 2 nd F G t B B
88 35 82 84 87 mpbir3and φ t T if 2 nd F G t B 2 nd F G t B A B
89 22 88 sseldd φ t T if 2 nd F G t B 2 nd F G t B U
90 eluni2 if 2 nd F G t B 2 nd F G t B U x U if 2 nd F G t B 2 nd F G t B x
91 89 90 sylib φ t T x U if 2 nd F G t B 2 nd F G t B x
92 simprl φ t T x U if 2 nd F G t B 2 nd F G t B x x U
93 simprr φ t T x U if 2 nd F G t B 2 nd F G t B x if 2 nd F G t B 2 nd F G t B x
94 88 adantr φ t T x U if 2 nd F G t B 2 nd F G t B x if 2 nd F G t B 2 nd F G t B A B
95 inelcm if 2 nd F G t B 2 nd F G t B x if 2 nd F G t B 2 nd F G t B A B x A B
96 93 94 95 syl2anc φ t T x U if 2 nd F G t B 2 nd F G t B x x A B
97 ineq1 u = x u A B = x A B
98 97 neeq1d u = x u A B x A B
99 98 10 elrab2 x T x U x A B
100 92 96 99 sylanbrc φ t T x U if 2 nd F G t B 2 nd F G t B x x T
101 91 100 93 reximssdv φ t T x T if 2 nd F G t B 2 nd F G t B x
102 101 ralrimiva φ t T x T if 2 nd F G t B 2 nd F G t B x
103 eleq2 x = h t if 2 nd F G t B 2 nd F G t B x if 2 nd F G t B 2 nd F G t B h t
104 103 ac6sfi T Fin t T x T if 2 nd F G t B 2 nd F G t B x h h : T T t T if 2 nd F G t B 2 nd F G t B h t
105 21 102 104 syl2anc φ h h : T T t T if 2 nd F G t B 2 nd F G t B h t
106 105 adantr φ z U A z h h : T T t T if 2 nd F G t B 2 nd F G t B h t
107 2fveq3 x = t F G x = F G t
108 107 fveq2d x = t 2 nd F G x = 2 nd F G t
109 108 breq1d x = t 2 nd F G x B 2 nd F G t B
110 109 108 ifbieq1d x = t if 2 nd F G x B 2 nd F G x B = if 2 nd F G t B 2 nd F G t B
111 fveq2 x = t h x = h t
112 110 111 eleq12d x = t if 2 nd F G x B 2 nd F G x B h x if 2 nd F G t B 2 nd F G t B h t
113 112 cbvralvw x T if 2 nd F G x B 2 nd F G x B h x t T if 2 nd F G t B 2 nd F G t B h t
114 1 adantr φ z U A z h : T T x T if 2 nd F G x B 2 nd F G x B h x A
115 2 adantr φ z U A z h : T T x T if 2 nd F G x B 2 nd F G x B h x B
116 3 adantr φ z U A z h : T T x T if 2 nd F G x B 2 nd F G x B h x A B
117 5 adantr φ z U A z h : T T x T if 2 nd F G x B 2 nd F G x B h x F : 2
118 6 adantr φ z U A z h : T T x T if 2 nd F G x B 2 nd F G x B h x U 𝒫 ran . F Fin
119 7 adantr φ z U A z h : T T x T if 2 nd F G x B 2 nd F G x B h x A B U
120 8 adantr φ z U A z h : T T x T if 2 nd F G x B 2 nd F G x B h x G : U
121 9 adantlr φ z U A z h : T T x T if 2 nd F G x B 2 nd F G x B h x t U . F G t = t
122 simprrl φ z U A z h : T T x T if 2 nd F G x B 2 nd F G x B h x h : T T
123 simprrr φ z U A z h : T T x T if 2 nd F G x B 2 nd F G x B h x x T if 2 nd F G x B 2 nd F G x B h x
124 112 rspccva x T if 2 nd F G x B 2 nd F G x B h x t T if 2 nd F G t B 2 nd F G t B h t
125 123 124 sylan φ z U A z h : T T x T if 2 nd F G x B 2 nd F G x B h x t T if 2 nd F G t B 2 nd F G t B h t
126 simprlr φ z U A z h : T T x T if 2 nd F G x B 2 nd F G x B h x A z
127 simprll φ z U A z h : T T x T if 2 nd F G x B 2 nd F G x B h x z U
128 14 adantr φ z U A z h : T T x T if 2 nd F G x B 2 nd F G x B h x A A B
129 inelcm A z A A B z A B
130 126 128 129 syl2anc φ z U A z h : T T x T if 2 nd F G x B 2 nd F G x B h x z A B
131 ineq1 u = z u A B = z A B
132 131 neeq1d u = z u A B z A B
133 132 10 elrab2 z T z U z A B
134 127 130 133 sylanbrc φ z U A z h : T T x T if 2 nd F G x B 2 nd F G x B h x z T
135 eqid seq 1 h 1 st × z = seq 1 h 1 st × z
136 fveq2 m = n seq 1 h 1 st × z m = seq 1 h 1 st × z n
137 136 eleq2d m = n B seq 1 h 1 st × z m B seq 1 h 1 st × z n
138 137 cbvrabv m | B seq 1 h 1 st × z m = n | B seq 1 h 1 st × z n
139 eqid sup m | B seq 1 h 1 st × z m < = sup m | B seq 1 h 1 st × z m <
140 114 115 116 4 117 118 119 120 121 10 122 125 126 134 135 138 139 ovolicc2lem4 φ z U A z h : T T x T if 2 nd F G x B 2 nd F G x B h x B A sup ran S * <
141 140 anassrs φ z U A z h : T T x T if 2 nd F G x B 2 nd F G x B h x B A sup ran S * <
142 141 expr φ z U A z h : T T x T if 2 nd F G x B 2 nd F G x B h x B A sup ran S * <
143 113 142 syl5bir φ z U A z h : T T t T if 2 nd F G t B 2 nd F G t B h t B A sup ran S * <
144 143 expimpd φ z U A z h : T T t T if 2 nd F G t B 2 nd F G t B h t B A sup ran S * <
145 144 exlimdv φ z U A z h h : T T t T if 2 nd F G t B 2 nd F G t B h t B A sup ran S * <
146 106 145 mpd φ z U A z B A sup ran S * <
147 17 146 rexlimddv φ B A sup ran S * <