Step |
Hyp |
Ref |
Expression |
1 |
|
ovolicc.1 |
|
2 |
|
ovolicc.2 |
|
3 |
|
ovolicc.3 |
|
4 |
|
ovolicc2.4 |
|
5 |
|
ovolicc2.5 |
|
6 |
|
ovolicc2.6 |
|
7 |
|
ovolicc2.7 |
|
8 |
|
ovolicc2.8 |
|
9 |
|
ovolicc2.9 |
|
10 |
|
ovolicc2.10 |
|
11 |
1
|
rexrd |
|
12 |
2
|
rexrd |
|
13 |
|
lbicc2 |
|
14 |
11 12 3 13
|
syl3anc |
|
15 |
7 14
|
sseldd |
|
16 |
|
eluni2 |
|
17 |
15 16
|
sylib |
|
18 |
6
|
elin2d |
|
19 |
10
|
ssrab3 |
|
20 |
|
ssfi |
|
21 |
18 19 20
|
sylancl |
|
22 |
7
|
adantr |
|
23 |
|
ineq1 |
|
24 |
23
|
neeq1d |
|
25 |
24 10
|
elrab2 |
|
26 |
25
|
simplbi |
|
27 |
|
ffvelrn |
|
28 |
8 26 27
|
syl2an |
|
29 |
5
|
ffvelrnda |
|
30 |
28 29
|
syldan |
|
31 |
30
|
elin2d |
|
32 |
|
xp2nd |
|
33 |
31 32
|
syl |
|
34 |
2
|
adantr |
|
35 |
33 34
|
ifcld |
|
36 |
25
|
simprbi |
|
37 |
36
|
adantl |
|
38 |
|
n0 |
|
39 |
37 38
|
sylib |
|
40 |
1
|
adantr |
|
41 |
|
simprr |
|
42 |
41
|
elin2d |
|
43 |
2
|
adantr |
|
44 |
|
elicc2 |
|
45 |
1 43 44
|
syl2an2r |
|
46 |
42 45
|
mpbid |
|
47 |
46
|
simp1d |
|
48 |
31
|
adantrr |
|
49 |
48 32
|
syl |
|
50 |
46
|
simp2d |
|
51 |
41
|
elin1d |
|
52 |
28
|
adantrr |
|
53 |
|
fvco3 |
|
54 |
5 52 53
|
syl2an2r |
|
55 |
26 9
|
sylan2 |
|
56 |
55
|
adantrr |
|
57 |
|
1st2nd2 |
|
58 |
48 57
|
syl |
|
59 |
58
|
fveq2d |
|
60 |
|
df-ov |
|
61 |
59 60
|
eqtr4di |
|
62 |
54 56 61
|
3eqtr3d |
|
63 |
51 62
|
eleqtrd |
|
64 |
|
xp1st |
|
65 |
48 64
|
syl |
|
66 |
|
rexr |
|
67 |
|
rexr |
|
68 |
|
elioo2 |
|
69 |
66 67 68
|
syl2an |
|
70 |
65 49 69
|
syl2anc |
|
71 |
63 70
|
mpbid |
|
72 |
71
|
simp3d |
|
73 |
47 49 72
|
ltled |
|
74 |
40 47 49 50 73
|
letrd |
|
75 |
74
|
expr |
|
76 |
75
|
exlimdv |
|
77 |
39 76
|
mpd |
|
78 |
3
|
adantr |
|
79 |
|
breq2 |
|
80 |
|
breq2 |
|
81 |
79 80
|
ifboth |
|
82 |
77 78 81
|
syl2anc |
|
83 |
|
min2 |
|
84 |
33 34 83
|
syl2anc |
|
85 |
|
elicc2 |
|
86 |
1 2 85
|
syl2anc |
|
87 |
86
|
adantr |
|
88 |
35 82 84 87
|
mpbir3and |
|
89 |
22 88
|
sseldd |
|
90 |
|
eluni2 |
|
91 |
89 90
|
sylib |
|
92 |
|
simprl |
|
93 |
|
simprr |
|
94 |
88
|
adantr |
|
95 |
|
inelcm |
|
96 |
93 94 95
|
syl2anc |
|
97 |
|
ineq1 |
|
98 |
97
|
neeq1d |
|
99 |
98 10
|
elrab2 |
|
100 |
92 96 99
|
sylanbrc |
|
101 |
91 100 93
|
reximssdv |
|
102 |
101
|
ralrimiva |
|
103 |
|
eleq2 |
|
104 |
103
|
ac6sfi |
|
105 |
21 102 104
|
syl2anc |
|
106 |
105
|
adantr |
|
107 |
|
2fveq3 |
|
108 |
107
|
fveq2d |
|
109 |
108
|
breq1d |
|
110 |
109 108
|
ifbieq1d |
|
111 |
|
fveq2 |
|
112 |
110 111
|
eleq12d |
|
113 |
112
|
cbvralvw |
|
114 |
1
|
adantr |
|
115 |
2
|
adantr |
|
116 |
3
|
adantr |
|
117 |
5
|
adantr |
|
118 |
6
|
adantr |
|
119 |
7
|
adantr |
|
120 |
8
|
adantr |
|
121 |
9
|
adantlr |
|
122 |
|
simprrl |
|
123 |
|
simprrr |
|
124 |
112
|
rspccva |
|
125 |
123 124
|
sylan |
|
126 |
|
simprlr |
|
127 |
|
simprll |
|
128 |
14
|
adantr |
|
129 |
|
inelcm |
|
130 |
126 128 129
|
syl2anc |
|
131 |
|
ineq1 |
|
132 |
131
|
neeq1d |
|
133 |
132 10
|
elrab2 |
|
134 |
127 130 133
|
sylanbrc |
|
135 |
|
eqid |
|
136 |
|
fveq2 |
|
137 |
136
|
eleq2d |
|
138 |
137
|
cbvrabv |
|
139 |
|
eqid |
|
140 |
114 115 116 4 117 118 119 120 121 10 122 125 126 134 135 138 139
|
ovolicc2lem4 |
|
141 |
140
|
anassrs |
|
142 |
141
|
expr |
|
143 |
113 142
|
syl5bir |
|
144 |
143
|
expimpd |
|
145 |
144
|
exlimdv |
|
146 |
106 145
|
mpd |
|
147 |
17 146
|
rexlimddv |
|