Step |
Hyp |
Ref |
Expression |
1 |
|
pnfxr |
|
2 |
|
icossre |
|
3 |
1 2
|
mpan2 |
|
4 |
3
|
adantr |
|
5 |
|
ovolge0 |
|
6 |
4 5
|
syl |
|
7 |
|
mnflt0 |
|
8 |
|
mnfxr |
|
9 |
|
0xr |
|
10 |
|
ovolcl |
|
11 |
3 10
|
syl |
|
12 |
11
|
adantr |
|
13 |
|
xrltletr |
|
14 |
8 9 12 13
|
mp3an12i |
|
15 |
7 14
|
mpani |
|
16 |
6 15
|
mpd |
|
17 |
|
simpr |
|
18 |
|
xrrebnd |
|
19 |
12 18
|
syl |
|
20 |
16 17 19
|
mpbir2and |
|
21 |
20
|
ltp1d |
|
22 |
|
peano2re |
|
23 |
20 22
|
syl |
|
24 |
|
simpl |
|
25 |
23 24
|
readdcld |
|
26 |
|
0red |
|
27 |
20
|
lep1d |
|
28 |
26 20 23 6 27
|
letrd |
|
29 |
24 23
|
addge02d |
|
30 |
28 29
|
mpbid |
|
31 |
|
ovolicc |
|
32 |
24 25 30 31
|
syl3anc |
|
33 |
23
|
recnd |
|
34 |
24
|
recnd |
|
35 |
33 34
|
pncand |
|
36 |
32 35
|
eqtrd |
|
37 |
|
elicc2 |
|
38 |
24 25 37
|
syl2anc |
|
39 |
38
|
biimpa |
|
40 |
39
|
simp1d |
|
41 |
39
|
simp2d |
|
42 |
|
elicopnf |
|
43 |
42
|
ad2antrr |
|
44 |
40 41 43
|
mpbir2and |
|
45 |
44
|
ex |
|
46 |
45
|
ssrdv |
|
47 |
|
ovolss |
|
48 |
46 4 47
|
syl2anc |
|
49 |
36 48
|
eqbrtrrd |
|
50 |
23 20 49
|
lensymd |
|
51 |
21 50
|
pm2.65da |
|
52 |
|
nltpnft |
|
53 |
11 52
|
syl |
|
54 |
51 53
|
mpbird |
|