Metamath Proof Explorer


Theorem ovolicopnf

Description: The measure of a right-unbounded interval. (Contributed by Mario Carneiro, 14-Jun-2014)

Ref Expression
Assertion ovolicopnf A vol * A +∞ = +∞

Proof

Step Hyp Ref Expression
1 pnfxr +∞ *
2 icossre A +∞ * A +∞
3 1 2 mpan2 A A +∞
4 3 adantr A vol * A +∞ < +∞ A +∞
5 ovolge0 A +∞ 0 vol * A +∞
6 4 5 syl A vol * A +∞ < +∞ 0 vol * A +∞
7 mnflt0 −∞ < 0
8 mnfxr −∞ *
9 0xr 0 *
10 ovolcl A +∞ vol * A +∞ *
11 3 10 syl A vol * A +∞ *
12 11 adantr A vol * A +∞ < +∞ vol * A +∞ *
13 xrltletr −∞ * 0 * vol * A +∞ * −∞ < 0 0 vol * A +∞ −∞ < vol * A +∞
14 8 9 12 13 mp3an12i A vol * A +∞ < +∞ −∞ < 0 0 vol * A +∞ −∞ < vol * A +∞
15 7 14 mpani A vol * A +∞ < +∞ 0 vol * A +∞ −∞ < vol * A +∞
16 6 15 mpd A vol * A +∞ < +∞ −∞ < vol * A +∞
17 simpr A vol * A +∞ < +∞ vol * A +∞ < +∞
18 xrrebnd vol * A +∞ * vol * A +∞ −∞ < vol * A +∞ vol * A +∞ < +∞
19 12 18 syl A vol * A +∞ < +∞ vol * A +∞ −∞ < vol * A +∞ vol * A +∞ < +∞
20 16 17 19 mpbir2and A vol * A +∞ < +∞ vol * A +∞
21 20 ltp1d A vol * A +∞ < +∞ vol * A +∞ < vol * A +∞ + 1
22 peano2re vol * A +∞ vol * A +∞ + 1
23 20 22 syl A vol * A +∞ < +∞ vol * A +∞ + 1
24 simpl A vol * A +∞ < +∞ A
25 23 24 readdcld A vol * A +∞ < +∞ vol * A +∞ + 1 + A
26 0red A vol * A +∞ < +∞ 0
27 20 lep1d A vol * A +∞ < +∞ vol * A +∞ vol * A +∞ + 1
28 26 20 23 6 27 letrd A vol * A +∞ < +∞ 0 vol * A +∞ + 1
29 24 23 addge02d A vol * A +∞ < +∞ 0 vol * A +∞ + 1 A vol * A +∞ + 1 + A
30 28 29 mpbid A vol * A +∞ < +∞ A vol * A +∞ + 1 + A
31 ovolicc A vol * A +∞ + 1 + A A vol * A +∞ + 1 + A vol * A vol * A +∞ + 1 + A = vol * A +∞ + 1 + A - A
32 24 25 30 31 syl3anc A vol * A +∞ < +∞ vol * A vol * A +∞ + 1 + A = vol * A +∞ + 1 + A - A
33 23 recnd A vol * A +∞ < +∞ vol * A +∞ + 1
34 24 recnd A vol * A +∞ < +∞ A
35 33 34 pncand A vol * A +∞ < +∞ vol * A +∞ + 1 + A - A = vol * A +∞ + 1
36 32 35 eqtrd A vol * A +∞ < +∞ vol * A vol * A +∞ + 1 + A = vol * A +∞ + 1
37 elicc2 A vol * A +∞ + 1 + A x A vol * A +∞ + 1 + A x A x x vol * A +∞ + 1 + A
38 24 25 37 syl2anc A vol * A +∞ < +∞ x A vol * A +∞ + 1 + A x A x x vol * A +∞ + 1 + A
39 38 biimpa A vol * A +∞ < +∞ x A vol * A +∞ + 1 + A x A x x vol * A +∞ + 1 + A
40 39 simp1d A vol * A +∞ < +∞ x A vol * A +∞ + 1 + A x
41 39 simp2d A vol * A +∞ < +∞ x A vol * A +∞ + 1 + A A x
42 elicopnf A x A +∞ x A x
43 42 ad2antrr A vol * A +∞ < +∞ x A vol * A +∞ + 1 + A x A +∞ x A x
44 40 41 43 mpbir2and A vol * A +∞ < +∞ x A vol * A +∞ + 1 + A x A +∞
45 44 ex A vol * A +∞ < +∞ x A vol * A +∞ + 1 + A x A +∞
46 45 ssrdv A vol * A +∞ < +∞ A vol * A +∞ + 1 + A A +∞
47 ovolss A vol * A +∞ + 1 + A A +∞ A +∞ vol * A vol * A +∞ + 1 + A vol * A +∞
48 46 4 47 syl2anc A vol * A +∞ < +∞ vol * A vol * A +∞ + 1 + A vol * A +∞
49 36 48 eqbrtrrd A vol * A +∞ < +∞ vol * A +∞ + 1 vol * A +∞
50 23 20 49 lensymd A vol * A +∞ < +∞ ¬ vol * A +∞ < vol * A +∞ + 1
51 21 50 pm2.65da A ¬ vol * A +∞ < +∞
52 nltpnft vol * A +∞ * vol * A +∞ = +∞ ¬ vol * A +∞ < +∞
53 11 52 syl A vol * A +∞ = +∞ ¬ vol * A +∞ < +∞
54 51 53 mpbird A vol * A +∞ = +∞