| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ioombl |
|
| 2 |
|
mblvol |
|
| 3 |
1 2
|
ax-mp |
|
| 4 |
|
iccmbl |
|
| 5 |
|
mblvol |
|
| 6 |
4 5
|
syl |
|
| 7 |
6
|
3adant3 |
|
| 8 |
1
|
a1i |
|
| 9 |
|
prssi |
|
| 10 |
9
|
3adant3 |
|
| 11 |
|
prfi |
|
| 12 |
|
ovolfi |
|
| 13 |
11 10 12
|
sylancr |
|
| 14 |
|
nulmbl |
|
| 15 |
10 13 14
|
syl2anc |
|
| 16 |
|
df-pr |
|
| 17 |
16
|
ineq2i |
|
| 18 |
|
indi |
|
| 19 |
17 18
|
eqtri |
|
| 20 |
|
simp1 |
|
| 21 |
20
|
ltnrd |
|
| 22 |
|
eliooord |
|
| 23 |
22
|
simpld |
|
| 24 |
21 23
|
nsyl |
|
| 25 |
|
disjsn |
|
| 26 |
24 25
|
sylibr |
|
| 27 |
|
simp2 |
|
| 28 |
27
|
ltnrd |
|
| 29 |
|
eliooord |
|
| 30 |
29
|
simprd |
|
| 31 |
28 30
|
nsyl |
|
| 32 |
|
disjsn |
|
| 33 |
31 32
|
sylibr |
|
| 34 |
26 33
|
uneq12d |
|
| 35 |
|
un0 |
|
| 36 |
34 35
|
eqtrdi |
|
| 37 |
19 36
|
eqtrid |
|
| 38 |
|
ioossicc |
|
| 39 |
|
iccssre |
|
| 40 |
39
|
3adant3 |
|
| 41 |
|
ovolicc |
|
| 42 |
27 20
|
resubcld |
|
| 43 |
41 42
|
eqeltrd |
|
| 44 |
|
ovolsscl |
|
| 45 |
38 40 43 44
|
mp3an2i |
|
| 46 |
3 45
|
eqeltrid |
|
| 47 |
|
mblvol |
|
| 48 |
15 47
|
syl |
|
| 49 |
48 13
|
eqtrd |
|
| 50 |
|
0re |
|
| 51 |
49 50
|
eqeltrdi |
|
| 52 |
|
volun |
|
| 53 |
8 15 37 46 51 52
|
syl32anc |
|
| 54 |
|
rexr |
|
| 55 |
|
rexr |
|
| 56 |
|
id |
|
| 57 |
|
prunioo |
|
| 58 |
54 55 56 57
|
syl3an |
|
| 59 |
58
|
fveq2d |
|
| 60 |
49
|
oveq2d |
|
| 61 |
46
|
recnd |
|
| 62 |
61
|
addridd |
|
| 63 |
60 62
|
eqtrd |
|
| 64 |
53 59 63
|
3eqtr3d |
|
| 65 |
7 64 41
|
3eqtr3d |
|
| 66 |
3 65
|
eqtr3id |
|