Metamath Proof Explorer


Theorem ovoliun2

Description: The Lebesgue outer measure function is countably sub-additive. (This version is a little easier to read, but does not allow infinite values like ovoliun .) (Contributed by Mario Carneiro, 12-Jun-2014)

Ref Expression
Hypotheses ovoliun.t T = seq 1 + G
ovoliun.g G = n vol * A
ovoliun.a φ n A
ovoliun.v φ n vol * A
ovoliun2.t φ T dom
Assertion ovoliun2 φ vol * n A n vol * A

Proof

Step Hyp Ref Expression
1 ovoliun.t T = seq 1 + G
2 ovoliun.g G = n vol * A
3 ovoliun.a φ n A
4 ovoliun.v φ n vol * A
5 ovoliun2.t φ T dom
6 1 2 3 4 ovoliun φ vol * n A sup ran T * <
7 nnuz = 1
8 1zzd φ 1
9 fvex vol * m / n A V
10 nfcv _ m vol * A
11 nfcv _ n vol *
12 nfcsb1v _ n m / n A
13 11 12 nffv _ n vol * m / n A
14 csbeq1a n = m A = m / n A
15 14 fveq2d n = m vol * A = vol * m / n A
16 10 13 15 cbvmpt n vol * A = m vol * m / n A
17 2 16 eqtri G = m vol * m / n A
18 17 fvmpt2 m vol * m / n A V G m = vol * m / n A
19 9 18 mpan2 m G m = vol * m / n A
20 19 adantl φ m G m = vol * m / n A
21 4 ralrimiva φ n vol * A
22 10 nfel1 m vol * A
23 13 nfel1 n vol * m / n A
24 15 eleq1d n = m vol * A vol * m / n A
25 22 23 24 cbvralw n vol * A m vol * m / n A
26 21 25 sylib φ m vol * m / n A
27 26 r19.21bi φ m vol * m / n A
28 20 27 eqeltrd φ m G m
29 7 8 28 serfre φ seq 1 + G :
30 1 feq1i T : seq 1 + G :
31 29 30 sylibr φ T :
32 31 frnd φ ran T
33 1nn 1
34 31 fdmd φ dom T =
35 33 34 eleqtrrid φ 1 dom T
36 35 ne0d φ dom T
37 dm0rn0 dom T = ran T =
38 37 necon3bii dom T ran T
39 36 38 sylib φ ran T
40 1 5 eqeltrrid φ seq 1 + G dom
41 7 8 20 27 40 isumrecl φ m vol * m / n A
42 elfznn m 1 k m
43 42 adantl φ k m 1 k m
44 43 19 syl φ k m 1 k G m = vol * m / n A
45 simpr φ k k
46 45 7 eleqtrdi φ k k 1
47 simpl φ k φ
48 47 42 27 syl2an φ k m 1 k vol * m / n A
49 48 recnd φ k m 1 k vol * m / n A
50 44 46 49 fsumser φ k m = 1 k vol * m / n A = seq 1 + G k
51 1 fveq1i T k = seq 1 + G k
52 50 51 eqtr4di φ k m = 1 k vol * m / n A = T k
53 fzfid φ 1 k Fin
54 fz1ssnn 1 k
55 54 a1i φ 1 k
56 3 ralrimiva φ n A
57 nfv m A
58 nfcv _ n
59 12 58 nfss n m / n A
60 14 sseq1d n = m A m / n A
61 57 59 60 cbvralw n A m m / n A
62 56 61 sylib φ m m / n A
63 62 r19.21bi φ m m / n A
64 ovolge0 m / n A 0 vol * m / n A
65 63 64 syl φ m 0 vol * m / n A
66 7 8 53 55 20 27 65 40 isumless φ m = 1 k vol * m / n A m vol * m / n A
67 66 adantr φ k m = 1 k vol * m / n A m vol * m / n A
68 52 67 eqbrtrrd φ k T k m vol * m / n A
69 68 ralrimiva φ k T k m vol * m / n A
70 brralrspcev m vol * m / n A k T k m vol * m / n A x k T k x
71 41 69 70 syl2anc φ x k T k x
72 31 ffnd φ T Fn
73 breq1 z = T k z x T k x
74 73 ralrn T Fn z ran T z x k T k x
75 72 74 syl φ z ran T z x k T k x
76 75 rexbidv φ x z ran T z x x k T k x
77 71 76 mpbird φ x z ran T z x
78 supxrre ran T ran T x z ran T z x sup ran T * < = sup ran T <
79 32 39 77 78 syl3anc φ sup ran T * < = sup ran T <
80 7 1 8 20 27 65 71 isumsup φ m vol * m / n A = sup ran T <
81 79 80 eqtr4d φ sup ran T * < = m vol * m / n A
82 10 13 15 cbvsumi n vol * A = m vol * m / n A
83 81 82 eqtr4di φ sup ran T * < = n vol * A
84 6 83 breqtrd φ vol * n A n vol * A