Step |
Hyp |
Ref |
Expression |
1 |
|
ovoliun.t |
|
2 |
|
ovoliun.g |
|
3 |
|
ovoliun.a |
|
4 |
|
ovoliun.v |
|
5 |
|
ovoliun2.t |
|
6 |
1 2 3 4
|
ovoliun |
|
7 |
|
nnuz |
|
8 |
|
1zzd |
|
9 |
|
fvex |
|
10 |
|
nfcv |
|
11 |
|
nfcv |
|
12 |
|
nfcsb1v |
|
13 |
11 12
|
nffv |
|
14 |
|
csbeq1a |
|
15 |
14
|
fveq2d |
|
16 |
10 13 15
|
cbvmpt |
|
17 |
2 16
|
eqtri |
|
18 |
17
|
fvmpt2 |
|
19 |
9 18
|
mpan2 |
|
20 |
19
|
adantl |
|
21 |
4
|
ralrimiva |
|
22 |
10
|
nfel1 |
|
23 |
13
|
nfel1 |
|
24 |
15
|
eleq1d |
|
25 |
22 23 24
|
cbvralw |
|
26 |
21 25
|
sylib |
|
27 |
26
|
r19.21bi |
|
28 |
20 27
|
eqeltrd |
|
29 |
7 8 28
|
serfre |
|
30 |
1
|
feq1i |
|
31 |
29 30
|
sylibr |
|
32 |
31
|
frnd |
|
33 |
|
1nn |
|
34 |
31
|
fdmd |
|
35 |
33 34
|
eleqtrrid |
|
36 |
35
|
ne0d |
|
37 |
|
dm0rn0 |
|
38 |
37
|
necon3bii |
|
39 |
36 38
|
sylib |
|
40 |
1 5
|
eqeltrrid |
|
41 |
7 8 20 27 40
|
isumrecl |
|
42 |
|
elfznn |
|
43 |
42
|
adantl |
|
44 |
43 19
|
syl |
|
45 |
|
simpr |
|
46 |
45 7
|
eleqtrdi |
|
47 |
|
simpl |
|
48 |
47 42 27
|
syl2an |
|
49 |
48
|
recnd |
|
50 |
44 46 49
|
fsumser |
|
51 |
1
|
fveq1i |
|
52 |
50 51
|
eqtr4di |
|
53 |
|
fzfid |
|
54 |
|
fz1ssnn |
|
55 |
54
|
a1i |
|
56 |
3
|
ralrimiva |
|
57 |
|
nfv |
|
58 |
|
nfcv |
|
59 |
12 58
|
nfss |
|
60 |
14
|
sseq1d |
|
61 |
57 59 60
|
cbvralw |
|
62 |
56 61
|
sylib |
|
63 |
62
|
r19.21bi |
|
64 |
|
ovolge0 |
|
65 |
63 64
|
syl |
|
66 |
7 8 53 55 20 27 65 40
|
isumless |
|
67 |
66
|
adantr |
|
68 |
52 67
|
eqbrtrrd |
|
69 |
68
|
ralrimiva |
|
70 |
|
brralrspcev |
|
71 |
41 69 70
|
syl2anc |
|
72 |
31
|
ffnd |
|
73 |
|
breq1 |
|
74 |
73
|
ralrn |
|
75 |
72 74
|
syl |
|
76 |
75
|
rexbidv |
|
77 |
71 76
|
mpbird |
|
78 |
|
supxrre |
|
79 |
32 39 77 78
|
syl3anc |
|
80 |
7 1 8 20 27 65 71
|
isumsup |
|
81 |
79 80
|
eqtr4d |
|
82 |
10 13 15
|
cbvsumi |
|
83 |
81 82
|
eqtr4di |
|
84 |
6 83
|
breqtrd |
|