Metamath Proof Explorer


Theorem ovoliunlem3

Description: Lemma for ovoliun . (Contributed by Mario Carneiro, 12-Jun-2014)

Ref Expression
Hypotheses ovoliun.t T = seq 1 + G
ovoliun.g G = n vol * A
ovoliun.a φ n A
ovoliun.v φ n vol * A
ovoliun.r φ sup ran T * <
ovoliun.b φ B +
Assertion ovoliunlem3 φ vol * n A sup ran T * < + B

Proof

Step Hyp Ref Expression
1 ovoliun.t T = seq 1 + G
2 ovoliun.g G = n vol * A
3 ovoliun.a φ n A
4 ovoliun.v φ n vol * A
5 ovoliun.r φ sup ran T * <
6 ovoliun.b φ B +
7 nfcv _ m A
8 nfcsb1v _ n m / n A
9 csbeq1a n = m A = m / n A
10 7 8 9 cbviun n A = m m / n A
11 10 fveq2i vol * n A = vol * m m / n A
12 2nn 2
13 nnnn0 n n 0
14 nnexpcl 2 n 0 2 n
15 12 13 14 sylancr n 2 n
16 15 nnrpd n 2 n +
17 rpdivcl B + 2 n + B 2 n +
18 6 16 17 syl2an φ n B 2 n +
19 eqid seq 1 + abs f = seq 1 + abs f
20 19 ovolgelb A vol * A B 2 n + f 2 A ran . f sup ran seq 1 + abs f * < vol * A + B 2 n
21 3 4 18 20 syl3anc φ n f 2 A ran . f sup ran seq 1 + abs f * < vol * A + B 2 n
22 21 ralrimiva φ n f 2 A ran . f sup ran seq 1 + abs f * < vol * A + B 2 n
23 ovex 2 V
24 nnenom ω
25 coeq2 f = g n . f = . g n
26 25 rneqd f = g n ran . f = ran . g n
27 26 unieqd f = g n ran . f = ran . g n
28 27 sseq2d f = g n A ran . f A ran . g n
29 coeq2 f = g n abs f = abs g n
30 29 seqeq3d f = g n seq 1 + abs f = seq 1 + abs g n
31 30 rneqd f = g n ran seq 1 + abs f = ran seq 1 + abs g n
32 31 supeq1d f = g n sup ran seq 1 + abs f * < = sup ran seq 1 + abs g n * <
33 32 breq1d f = g n sup ran seq 1 + abs f * < vol * A + B 2 n sup ran seq 1 + abs g n * < vol * A + B 2 n
34 28 33 anbi12d f = g n A ran . f sup ran seq 1 + abs f * < vol * A + B 2 n A ran . g n sup ran seq 1 + abs g n * < vol * A + B 2 n
35 23 24 34 axcc4 n f 2 A ran . f sup ran seq 1 + abs f * < vol * A + B 2 n g g : 2 n A ran . g n sup ran seq 1 + abs g n * < vol * A + B 2 n
36 22 35 syl φ g g : 2 n A ran . g n sup ran seq 1 + abs g n * < vol * A + B 2 n
37 xpnnen ×
38 37 ensymi ×
39 bren × j j : 1-1 onto ×
40 38 39 mpbi j j : 1-1 onto ×
41 nfcv _ m vol * A
42 nfcv _ n vol *
43 42 8 nffv _ n vol * m / n A
44 9 fveq2d n = m vol * A = vol * m / n A
45 41 43 44 cbvmpt n vol * A = m vol * m / n A
46 2 45 eqtri G = m vol * m / n A
47 3 ralrimiva φ n A
48 nfv m A
49 nfcv _ n
50 8 49 nfss n m / n A
51 9 sseq1d n = m A m / n A
52 48 50 51 cbvralw n A m m / n A
53 47 52 sylib φ m m / n A
54 53 r19.21bi φ m m / n A
55 54 ad4ant14 φ j : 1-1 onto × g : 2 n A ran . g n sup ran seq 1 + abs g n * < vol * A + B 2 n m m / n A
56 4 ralrimiva φ n vol * A
57 41 nfel1 m vol * A
58 43 nfel1 n vol * m / n A
59 44 eleq1d n = m vol * A vol * m / n A
60 57 58 59 cbvralw n vol * A m vol * m / n A
61 56 60 sylib φ m vol * m / n A
62 61 r19.21bi φ m vol * m / n A
63 62 ad4ant14 φ j : 1-1 onto × g : 2 n A ran . g n sup ran seq 1 + abs g n * < vol * A + B 2 n m vol * m / n A
64 5 ad2antrr φ j : 1-1 onto × g : 2 n A ran . g n sup ran seq 1 + abs g n * < vol * A + B 2 n sup ran T * <
65 6 ad2antrr φ j : 1-1 onto × g : 2 n A ran . g n sup ran seq 1 + abs g n * < vol * A + B 2 n B +
66 eqid seq 1 + abs g m = seq 1 + abs g m
67 eqid seq 1 + abs k g 1 st j k 2 nd j k = seq 1 + abs k g 1 st j k 2 nd j k
68 eqid k g 1 st j k 2 nd j k = k g 1 st j k 2 nd j k
69 simplr φ j : 1-1 onto × g : 2 n A ran . g n sup ran seq 1 + abs g n * < vol * A + B 2 n j : 1-1 onto ×
70 simprl φ j : 1-1 onto × g : 2 n A ran . g n sup ran seq 1 + abs g n * < vol * A + B 2 n g : 2
71 simprr φ j : 1-1 onto × g : 2 n A ran . g n sup ran seq 1 + abs g n * < vol * A + B 2 n n A ran . g n sup ran seq 1 + abs g n * < vol * A + B 2 n
72 nfv m A ran . g n sup ran seq 1 + abs g n * < vol * A + B 2 n
73 nfcv _ n ran . g m
74 8 73 nfss n m / n A ran . g m
75 nfcv _ n sup ran seq 1 + abs g m * <
76 nfcv _ n
77 nfcv _ n +
78 nfcv _ n B 2 m
79 43 77 78 nfov _ n vol * m / n A + B 2 m
80 75 76 79 nfbr n sup ran seq 1 + abs g m * < vol * m / n A + B 2 m
81 74 80 nfan n m / n A ran . g m sup ran seq 1 + abs g m * < vol * m / n A + B 2 m
82 fveq2 n = m g n = g m
83 82 coeq2d n = m . g n = . g m
84 83 rneqd n = m ran . g n = ran . g m
85 84 unieqd n = m ran . g n = ran . g m
86 9 85 sseq12d n = m A ran . g n m / n A ran . g m
87 82 coeq2d n = m abs g n = abs g m
88 87 seqeq3d n = m seq 1 + abs g n = seq 1 + abs g m
89 88 rneqd n = m ran seq 1 + abs g n = ran seq 1 + abs g m
90 89 supeq1d n = m sup ran seq 1 + abs g n * < = sup ran seq 1 + abs g m * <
91 oveq2 n = m 2 n = 2 m
92 91 oveq2d n = m B 2 n = B 2 m
93 44 92 oveq12d n = m vol * A + B 2 n = vol * m / n A + B 2 m
94 90 93 breq12d n = m sup ran seq 1 + abs g n * < vol * A + B 2 n sup ran seq 1 + abs g m * < vol * m / n A + B 2 m
95 86 94 anbi12d n = m A ran . g n sup ran seq 1 + abs g n * < vol * A + B 2 n m / n A ran . g m sup ran seq 1 + abs g m * < vol * m / n A + B 2 m
96 72 81 95 cbvralw n A ran . g n sup ran seq 1 + abs g n * < vol * A + B 2 n m m / n A ran . g m sup ran seq 1 + abs g m * < vol * m / n A + B 2 m
97 71 96 sylib φ j : 1-1 onto × g : 2 n A ran . g n sup ran seq 1 + abs g n * < vol * A + B 2 n m m / n A ran . g m sup ran seq 1 + abs g m * < vol * m / n A + B 2 m
98 97 r19.21bi φ j : 1-1 onto × g : 2 n A ran . g n sup ran seq 1 + abs g n * < vol * A + B 2 n m m / n A ran . g m sup ran seq 1 + abs g m * < vol * m / n A + B 2 m
99 98 simpld φ j : 1-1 onto × g : 2 n A ran . g n sup ran seq 1 + abs g n * < vol * A + B 2 n m m / n A ran . g m
100 98 simprd φ j : 1-1 onto × g : 2 n A ran . g n sup ran seq 1 + abs g n * < vol * A + B 2 n m sup ran seq 1 + abs g m * < vol * m / n A + B 2 m
101 1 46 55 63 64 65 66 67 68 69 70 99 100 ovoliunlem2 φ j : 1-1 onto × g : 2 n A ran . g n sup ran seq 1 + abs g n * < vol * A + B 2 n vol * m m / n A sup ran T * < + B
102 101 exp31 φ j : 1-1 onto × g : 2 n A ran . g n sup ran seq 1 + abs g n * < vol * A + B 2 n vol * m m / n A sup ran T * < + B
103 102 exlimdv φ j j : 1-1 onto × g : 2 n A ran . g n sup ran seq 1 + abs g n * < vol * A + B 2 n vol * m m / n A sup ran T * < + B
104 40 103 mpi φ g : 2 n A ran . g n sup ran seq 1 + abs g n * < vol * A + B 2 n vol * m m / n A sup ran T * < + B
105 104 exlimdv φ g g : 2 n A ran . g n sup ran seq 1 + abs g n * < vol * A + B 2 n vol * m m / n A sup ran T * < + B
106 36 105 mpd φ vol * m m / n A sup ran T * < + B
107 11 106 eqbrtrid φ vol * n A sup ran T * < + B