Metamath Proof Explorer


Theorem ovoliunnul

Description: A countable union of nullsets is null. (Contributed by Mario Carneiro, 8-Apr-2015)

Ref Expression
Assertion ovoliunnul A n A B vol * B = 0 vol * n A B = 0

Proof

Step Hyp Ref Expression
1 iuneq1 A = n A B = n B
2 0iun n B =
3 1 2 eqtrdi A = n A B =
4 3 fveq2d A = vol * n A B = vol *
5 ovol0 vol * = 0
6 4 5 eqtrdi A = vol * n A B = 0
7 6 a1i A n A B vol * B = 0 A = vol * n A B = 0
8 reldom Rel
9 8 brrelex1i A A V
10 9 adantr A n A B vol * B = 0 A V
11 0sdomg A V A A
12 10 11 syl A n A B vol * B = 0 A A
13 fodomr A A f f : onto A
14 13 expcom A A f f : onto A
15 14 adantr A n A B vol * B = 0 A f f : onto A
16 eliun x n A B n A x B
17 nfv n f : onto A
18 nfcv _ n
19 nfcsb1v _ n f k / n B
20 18 19 nfiun _ n k f k / n B
21 20 nfcri n x k f k / n B
22 foelrn f : onto A n A k n = f k
23 22 ex f : onto A n A k n = f k
24 csbeq1a n = f k B = f k / n B
25 24 adantl f : onto A n = f k B = f k / n B
26 25 eleq2d f : onto A n = f k x B x f k / n B
27 26 biimpd f : onto A n = f k x B x f k / n B
28 27 impancom f : onto A x B n = f k x f k / n B
29 28 reximdv f : onto A x B k n = f k k x f k / n B
30 eliun x k f k / n B k x f k / n B
31 29 30 syl6ibr f : onto A x B k n = f k x k f k / n B
32 31 ex f : onto A x B k n = f k x k f k / n B
33 32 com23 f : onto A k n = f k x B x k f k / n B
34 23 33 syld f : onto A n A x B x k f k / n B
35 17 21 34 rexlimd f : onto A n A x B x k f k / n B
36 16 35 syl5bi f : onto A x n A B x k f k / n B
37 36 ssrdv f : onto A n A B k f k / n B
38 37 adantl A n A B vol * B = 0 f : onto A n A B k f k / n B
39 fof f : onto A f : A
40 39 adantl A n A B vol * B = 0 f : onto A f : A
41 40 ffvelrnda A n A B vol * B = 0 f : onto A k f k A
42 simpllr A n A B vol * B = 0 f : onto A k n A B vol * B = 0
43 nfcv _ n
44 19 43 nfss n f k / n B
45 nfcv _ n vol *
46 45 19 nffv _ n vol * f k / n B
47 46 nfeq1 n vol * f k / n B = 0
48 44 47 nfan n f k / n B vol * f k / n B = 0
49 24 sseq1d n = f k B f k / n B
50 24 fveqeq2d n = f k vol * B = 0 vol * f k / n B = 0
51 49 50 anbi12d n = f k B vol * B = 0 f k / n B vol * f k / n B = 0
52 48 51 rspc f k A n A B vol * B = 0 f k / n B vol * f k / n B = 0
53 41 42 52 sylc A n A B vol * B = 0 f : onto A k f k / n B vol * f k / n B = 0
54 53 simpld A n A B vol * B = 0 f : onto A k f k / n B
55 54 ralrimiva A n A B vol * B = 0 f : onto A k f k / n B
56 iunss k f k / n B k f k / n B
57 55 56 sylibr A n A B vol * B = 0 f : onto A k f k / n B
58 eqid seq 1 + k vol * f k / n B = seq 1 + k vol * f k / n B
59 eqid k vol * f k / n B = k vol * f k / n B
60 53 simprd A n A B vol * B = 0 f : onto A k vol * f k / n B = 0
61 0re 0
62 60 61 eqeltrdi A n A B vol * B = 0 f : onto A k vol * f k / n B
63 60 mpteq2dva A n A B vol * B = 0 f : onto A k vol * f k / n B = k 0
64 fconstmpt × 0 = k 0
65 nnuz = 1
66 65 xpeq1i × 0 = 1 × 0
67 64 66 eqtr3i k 0 = 1 × 0
68 63 67 eqtrdi A n A B vol * B = 0 f : onto A k vol * f k / n B = 1 × 0
69 68 seqeq3d A n A B vol * B = 0 f : onto A seq 1 + k vol * f k / n B = seq 1 + 1 × 0
70 1z 1
71 serclim0 1 seq 1 + 1 × 0 0
72 seqex seq 1 + 1 × 0 V
73 c0ex 0 V
74 72 73 breldm seq 1 + 1 × 0 0 seq 1 + 1 × 0 dom
75 70 71 74 mp2b seq 1 + 1 × 0 dom
76 69 75 eqeltrdi A n A B vol * B = 0 f : onto A seq 1 + k vol * f k / n B dom
77 58 59 54 62 76 ovoliun2 A n A B vol * B = 0 f : onto A vol * k f k / n B k vol * f k / n B
78 60 sumeq2dv A n A B vol * B = 0 f : onto A k vol * f k / n B = k 0
79 65 eqimssi 1
80 79 orci 1 Fin
81 sumz 1 Fin k 0 = 0
82 80 81 ax-mp k 0 = 0
83 78 82 eqtrdi A n A B vol * B = 0 f : onto A k vol * f k / n B = 0
84 77 83 breqtrd A n A B vol * B = 0 f : onto A vol * k f k / n B 0
85 ovolge0 k f k / n B 0 vol * k f k / n B
86 57 85 syl A n A B vol * B = 0 f : onto A 0 vol * k f k / n B
87 ovolcl k f k / n B vol * k f k / n B *
88 57 87 syl A n A B vol * B = 0 f : onto A vol * k f k / n B *
89 0xr 0 *
90 xrletri3 vol * k f k / n B * 0 * vol * k f k / n B = 0 vol * k f k / n B 0 0 vol * k f k / n B
91 88 89 90 sylancl A n A B vol * B = 0 f : onto A vol * k f k / n B = 0 vol * k f k / n B 0 0 vol * k f k / n B
92 84 86 91 mpbir2and A n A B vol * B = 0 f : onto A vol * k f k / n B = 0
93 ovolssnul n A B k f k / n B k f k / n B vol * k f k / n B = 0 vol * n A B = 0
94 38 57 92 93 syl3anc A n A B vol * B = 0 f : onto A vol * n A B = 0
95 94 ex A n A B vol * B = 0 f : onto A vol * n A B = 0
96 95 exlimdv A n A B vol * B = 0 f f : onto A vol * n A B = 0
97 15 96 syld A n A B vol * B = 0 A vol * n A B = 0
98 12 97 sylbird A n A B vol * B = 0 A vol * n A B = 0
99 7 98 pm2.61dne A n A B vol * B = 0 vol * n A B = 0