Metamath Proof Explorer


Theorem ovollecl

Description: If an outer volume is bounded above, then it is real. (Contributed by Mario Carneiro, 18-Mar-2014)

Ref Expression
Assertion ovollecl A B vol * A B vol * A

Proof

Step Hyp Ref Expression
1 ovolcl A vol * A *
2 1 3ad2ant1 A B vol * A B vol * A *
3 simp2 A B vol * A B B
4 ovolge0 A 0 vol * A
5 4 3ad2ant1 A B vol * A B 0 vol * A
6 simp3 A B vol * A B vol * A B
7 xrrege0 vol * A * B 0 vol * A vol * A B vol * A
8 2 3 5 6 7 syl22anc A B vol * A B vol * A