Metamath Proof Explorer


Theorem ovolmge0

Description: The set M is composed of nonnegative extended real numbers. (Contributed by Mario Carneiro, 16-Mar-2014)

Ref Expression
Hypothesis elovolm.1 M = y * | f 2 A ran . f y = sup ran seq 1 + abs f * <
Assertion ovolmge0 B M 0 B

Proof

Step Hyp Ref Expression
1 elovolm.1 M = y * | f 2 A ran . f y = sup ran seq 1 + abs f * <
2 1 elovolm B M f 2 A ran . f B = sup ran seq 1 + abs f * <
3 elovolmlem f 2 f : 2
4 eqid abs f = abs f
5 eqid seq 1 + abs f = seq 1 + abs f
6 4 5 ovolsf f : 2 seq 1 + abs f : 0 +∞
7 1nn 1
8 ffvelrn seq 1 + abs f : 0 +∞ 1 seq 1 + abs f 1 0 +∞
9 6 7 8 sylancl f : 2 seq 1 + abs f 1 0 +∞
10 elrege0 seq 1 + abs f 1 0 +∞ seq 1 + abs f 1 0 seq 1 + abs f 1
11 10 simprbi seq 1 + abs f 1 0 +∞ 0 seq 1 + abs f 1
12 9 11 syl f : 2 0 seq 1 + abs f 1
13 6 frnd f : 2 ran seq 1 + abs f 0 +∞
14 icossxr 0 +∞ *
15 13 14 sstrdi f : 2 ran seq 1 + abs f *
16 6 ffnd f : 2 seq 1 + abs f Fn
17 fnfvelrn seq 1 + abs f Fn 1 seq 1 + abs f 1 ran seq 1 + abs f
18 16 7 17 sylancl f : 2 seq 1 + abs f 1 ran seq 1 + abs f
19 supxrub ran seq 1 + abs f * seq 1 + abs f 1 ran seq 1 + abs f seq 1 + abs f 1 sup ran seq 1 + abs f * <
20 15 18 19 syl2anc f : 2 seq 1 + abs f 1 sup ran seq 1 + abs f * <
21 0xr 0 *
22 14 9 sselid f : 2 seq 1 + abs f 1 *
23 supxrcl ran seq 1 + abs f * sup ran seq 1 + abs f * < *
24 15 23 syl f : 2 sup ran seq 1 + abs f * < *
25 xrletr 0 * seq 1 + abs f 1 * sup ran seq 1 + abs f * < * 0 seq 1 + abs f 1 seq 1 + abs f 1 sup ran seq 1 + abs f * < 0 sup ran seq 1 + abs f * <
26 21 22 24 25 mp3an2i f : 2 0 seq 1 + abs f 1 seq 1 + abs f 1 sup ran seq 1 + abs f * < 0 sup ran seq 1 + abs f * <
27 12 20 26 mp2and f : 2 0 sup ran seq 1 + abs f * <
28 3 27 sylbi f 2 0 sup ran seq 1 + abs f * <
29 breq2 B = sup ran seq 1 + abs f * < 0 B 0 sup ran seq 1 + abs f * <
30 28 29 syl5ibrcom f 2 B = sup ran seq 1 + abs f * < 0 B
31 30 adantld f 2 A ran . f B = sup ran seq 1 + abs f * < 0 B
32 31 rexlimiv f 2 A ran . f B = sup ran seq 1 + abs f * < 0 B
33 2 32 sylbi B M 0 B