Metamath Proof Explorer


Theorem ovolre

Description: The measure of the real numbers. (Contributed by Mario Carneiro, 14-Jun-2014)

Ref Expression
Assertion ovolre vol * = +∞

Proof

Step Hyp Ref Expression
1 ssid
2 ovolcl vol * *
3 1 2 ax-mp vol * *
4 pnfge vol * * vol * +∞
5 3 4 ax-mp vol * +∞
6 0re 0
7 ovolicopnf 0 vol * 0 +∞ = +∞
8 6 7 ax-mp vol * 0 +∞ = +∞
9 rge0ssre 0 +∞
10 ovolss 0 +∞ vol * 0 +∞ vol *
11 9 1 10 mp2an vol * 0 +∞ vol *
12 8 11 eqbrtrri +∞ vol *
13 pnfxr +∞ *
14 xrletri3 vol * * +∞ * vol * = +∞ vol * +∞ +∞ vol *
15 3 13 14 mp2an vol * = +∞ vol * +∞ +∞ vol *
16 5 12 15 mpbir2an vol * = +∞