Database
BASIC REAL AND COMPLEX ANALYSIS
Integrals
Lebesgue measure
ovolre
Next ⟩
ismbl
Metamath Proof Explorer
Ascii
Unicode
Theorem
ovolre
Description:
The measure of the real numbers.
(Contributed by
Mario Carneiro
, 14-Jun-2014)
Ref
Expression
Assertion
ovolre
⊢
vol
*
⁡
ℝ
=
+∞
Proof
Step
Hyp
Ref
Expression
1
ssid
⊢
ℝ
⊆
ℝ
2
ovolcl
⊢
ℝ
⊆
ℝ
→
vol
*
⁡
ℝ
∈
ℝ
*
3
1
2
ax-mp
⊢
vol
*
⁡
ℝ
∈
ℝ
*
4
pnfge
⊢
vol
*
⁡
ℝ
∈
ℝ
*
→
vol
*
⁡
ℝ
≤
+∞
5
3
4
ax-mp
⊢
vol
*
⁡
ℝ
≤
+∞
6
0re
⊢
0
∈
ℝ
7
ovolicopnf
⊢
0
∈
ℝ
→
vol
*
⁡
0
+∞
=
+∞
8
6
7
ax-mp
⊢
vol
*
⁡
0
+∞
=
+∞
9
rge0ssre
⊢
0
+∞
⊆
ℝ
10
ovolss
⊢
0
+∞
⊆
ℝ
∧
ℝ
⊆
ℝ
→
vol
*
⁡
0
+∞
≤
vol
*
⁡
ℝ
11
9
1
10
mp2an
⊢
vol
*
⁡
0
+∞
≤
vol
*
⁡
ℝ
12
8
11
eqbrtrri
⊢
+∞
≤
vol
*
⁡
ℝ
13
pnfxr
⊢
+∞
∈
ℝ
*
14
xrletri3
⊢
vol
*
⁡
ℝ
∈
ℝ
*
∧
+∞
∈
ℝ
*
→
vol
*
⁡
ℝ
=
+∞
↔
vol
*
⁡
ℝ
≤
+∞
∧
+∞
≤
vol
*
⁡
ℝ
15
3
13
14
mp2an
⊢
vol
*
⁡
ℝ
=
+∞
↔
vol
*
⁡
ℝ
≤
+∞
∧
+∞
≤
vol
*
⁡
ℝ
16
5
12
15
mpbir2an
⊢
vol
*
⁡
ℝ
=
+∞