Metamath Proof Explorer


Theorem ovolsca

Description: The Lebesgue outer measure function respects scaling of sets by positive reals. (Contributed by Mario Carneiro, 6-Apr-2015)

Ref Expression
Hypotheses ovolsca.1 φ A
ovolsca.2 φ C +
ovolsca.3 φ B = x | C x A
ovolsca.4 φ vol * A
Assertion ovolsca φ vol * B = vol * A C

Proof

Step Hyp Ref Expression
1 ovolsca.1 φ A
2 ovolsca.2 φ C +
3 ovolsca.3 φ B = x | C x A
4 ovolsca.4 φ vol * A
5 1 2 3 4 ovolscalem2 φ vol * B vol * A C
6 4 recnd φ vol * A
7 2 rpcnd φ C
8 2 rpne0d φ C 0
9 6 7 8 divrecd φ vol * A C = vol * A 1 C
10 ssrab2 x | C x A
11 3 10 eqsstrdi φ B
12 2 rpreccld φ 1 C +
13 1 2 3 sca2rab φ A = y | 1 C y B
14 4 2 rerpdivcld φ vol * A C
15 ovollecl B vol * A C vol * B vol * A C vol * B
16 11 14 5 15 syl3anc φ vol * B
17 11 12 13 16 ovolscalem2 φ vol * A vol * B 1 C
18 4 16 12 lemuldivd φ vol * A 1 C vol * B vol * A vol * B 1 C
19 17 18 mpbird φ vol * A 1 C vol * B
20 9 19 eqbrtrd φ vol * A C vol * B
21 16 14 letri3d φ vol * B = vol * A C vol * B vol * A C vol * A C vol * B
22 5 20 21 mpbir2and φ vol * B = vol * A C