Metamath Proof Explorer


Theorem ovolscalem2

Description: Lemma for ovolshft . (Contributed by Mario Carneiro, 22-Mar-2014)

Ref Expression
Hypotheses ovolsca.1 φ A
ovolsca.2 φ C +
ovolsca.3 φ B = x | C x A
ovolsca.4 φ vol * A
Assertion ovolscalem2 φ vol * B vol * A C

Proof

Step Hyp Ref Expression
1 ovolsca.1 φ A
2 ovolsca.2 φ C +
3 ovolsca.3 φ B = x | C x A
4 ovolsca.4 φ vol * A
5 1 adantr φ y + A
6 4 adantr φ y + vol * A
7 rpmulcl C + y + C y +
8 2 7 sylan φ y + C y +
9 eqid seq 1 + abs f = seq 1 + abs f
10 9 ovolgelb A vol * A C y + f 2 A ran . f sup ran seq 1 + abs f * < vol * A + C y
11 5 6 8 10 syl3anc φ y + f 2 A ran . f sup ran seq 1 + abs f * < vol * A + C y
12 1 ad2antrr φ y + f 2 A ran . f sup ran seq 1 + abs f * < vol * A + C y A
13 2 ad2antrr φ y + f 2 A ran . f sup ran seq 1 + abs f * < vol * A + C y C +
14 3 ad2antrr φ y + f 2 A ran . f sup ran seq 1 + abs f * < vol * A + C y B = x | C x A
15 4 ad2antrr φ y + f 2 A ran . f sup ran seq 1 + abs f * < vol * A + C y vol * A
16 2fveq3 m = n 1 st f m = 1 st f n
17 16 oveq1d m = n 1 st f m C = 1 st f n C
18 2fveq3 m = n 2 nd f m = 2 nd f n
19 18 oveq1d m = n 2 nd f m C = 2 nd f n C
20 17 19 opeq12d m = n 1 st f m C 2 nd f m C = 1 st f n C 2 nd f n C
21 20 cbvmptv m 1 st f m C 2 nd f m C = n 1 st f n C 2 nd f n C
22 elmapi f 2 f : 2
23 22 ad2antrl φ y + f 2 A ran . f sup ran seq 1 + abs f * < vol * A + C y f : 2
24 simprrl φ y + f 2 A ran . f sup ran seq 1 + abs f * < vol * A + C y A ran . f
25 simplr φ y + f 2 A ran . f sup ran seq 1 + abs f * < vol * A + C y y +
26 simprrr φ y + f 2 A ran . f sup ran seq 1 + abs f * < vol * A + C y sup ran seq 1 + abs f * < vol * A + C y
27 12 13 14 15 9 21 23 24 25 26 ovolscalem1 φ y + f 2 A ran . f sup ran seq 1 + abs f * < vol * A + C y vol * B vol * A C + y
28 11 27 rexlimddv φ y + vol * B vol * A C + y
29 28 ralrimiva φ y + vol * B vol * A C + y
30 ssrab2 x | C x A
31 3 30 eqsstrdi φ B
32 ovolcl B vol * B *
33 31 32 syl φ vol * B *
34 4 2 rerpdivcld φ vol * A C
35 xralrple vol * B * vol * A C vol * B vol * A C y + vol * B vol * A C + y
36 33 34 35 syl2anc φ vol * B vol * A C y + vol * B vol * A C + y
37 29 36 mpbird φ vol * B vol * A C