Metamath Proof Explorer


Theorem ovolsf

Description: Closure for the partial sums of the interval length function. (Contributed by Mario Carneiro, 16-Mar-2014)

Ref Expression
Hypotheses ovolfs.1 G = abs F
ovolfs.2 S = seq 1 + G
Assertion ovolsf F : 2 S : 0 +∞

Proof

Step Hyp Ref Expression
1 ovolfs.1 G = abs F
2 ovolfs.2 S = seq 1 + G
3 nnuz = 1
4 1zzd F : 2 1
5 1 ovolfsf F : 2 G : 0 +∞
6 5 ffvelrnda F : 2 x G x 0 +∞
7 ge0addcl x 0 +∞ y 0 +∞ x + y 0 +∞
8 7 adantl F : 2 x 0 +∞ y 0 +∞ x + y 0 +∞
9 3 4 6 8 seqf F : 2 seq 1 + G : 0 +∞
10 2 feq1i S : 0 +∞ seq 1 + G : 0 +∞
11 9 10 sylibr F : 2 S : 0 +∞