Metamath Proof Explorer


Theorem ovolshft

Description: The Lebesgue outer measure function is shift-invariant. (Contributed by Mario Carneiro, 22-Mar-2014) (Proof shortened by AV, 17-Sep-2020)

Ref Expression
Hypotheses ovolshft.1 φ A
ovolshft.2 φ C
ovolshft.3 φ B = x | x C A
Assertion ovolshft φ vol * A = vol * B

Proof

Step Hyp Ref Expression
1 ovolshft.1 φ A
2 ovolshft.2 φ C
3 ovolshft.3 φ B = x | x C A
4 eqid z * | g 2 B ran . g z = sup ran seq 1 + abs g * < = z * | g 2 B ran . g z = sup ran seq 1 + abs g * <
5 1 2 3 4 ovolshftlem2 φ y * | f 2 A ran . f y = sup ran seq 1 + abs f * < z * | g 2 B ran . g z = sup ran seq 1 + abs g * <
6 ssrab2 x | x C A
7 3 6 eqsstrdi φ B
8 2 renegcld φ C
9 1 2 3 shft2rab φ A = w | w C B
10 eqid y * | f 2 A ran . f y = sup ran seq 1 + abs f * < = y * | f 2 A ran . f y = sup ran seq 1 + abs f * <
11 7 8 9 10 ovolshftlem2 φ z * | g 2 B ran . g z = sup ran seq 1 + abs g * < y * | f 2 A ran . f y = sup ran seq 1 + abs f * <
12 5 11 eqssd φ y * | f 2 A ran . f y = sup ran seq 1 + abs f * < = z * | g 2 B ran . g z = sup ran seq 1 + abs g * <
13 12 infeq1d φ sup y * | f 2 A ran . f y = sup ran seq 1 + abs f * < * < = sup z * | g 2 B ran . g z = sup ran seq 1 + abs g * < * <
14 10 ovolval A vol * A = sup y * | f 2 A ran . f y = sup ran seq 1 + abs f * < * <
15 1 14 syl φ vol * A = sup y * | f 2 A ran . f y = sup ran seq 1 + abs f * < * <
16 4 ovolval B vol * B = sup z * | g 2 B ran . g z = sup ran seq 1 + abs g * < * <
17 7 16 syl φ vol * B = sup z * | g 2 B ran . g z = sup ran seq 1 + abs g * < * <
18 13 15 17 3eqtr4d φ vol * A = vol * B