Metamath Proof Explorer


Theorem ovolsn

Description: A singleton has 0 outer Lebesgue measure. (Contributed by Mario Carneiro, 15-Aug-2014)

Ref Expression
Assertion ovolsn A vol * A = 0

Proof

Step Hyp Ref Expression
1 snfi A Fin
2 snssi A A
3 ovolfi A Fin A vol * A = 0
4 1 2 3 sylancr A vol * A = 0