Database
BASIC REAL AND COMPLEX ANALYSIS
Integrals
Lebesgue measure
ovolsn
Next ⟩
ovolunlem1a
Metamath Proof Explorer
Ascii
Unicode
Theorem
ovolsn
Description:
A singleton has 0 outer Lebesgue measure.
(Contributed by
Mario Carneiro
, 15-Aug-2014)
Ref
Expression
Assertion
ovolsn
⊢
A
∈
ℝ
→
vol
*
⁡
A
=
0
Proof
Step
Hyp
Ref
Expression
1
snfi
⊢
A
∈
Fin
2
snssi
⊢
A
∈
ℝ
→
A
⊆
ℝ
3
ovolfi
⊢
A
∈
Fin
∧
A
⊆
ℝ
→
vol
*
⁡
A
=
0
4
1
2
3
sylancr
⊢
A
∈
ℝ
→
vol
*
⁡
A
=
0