Metamath Proof Explorer


Theorem ovolsplit

Description: The Lebesgue outer measure function is finitely sub-additive: application to a set split in two parts, using addition for extended reals. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypothesis ovolsplit.1 φ A
Assertion ovolsplit φ vol * A vol * A B + 𝑒 vol * A B

Proof

Step Hyp Ref Expression
1 ovolsplit.1 φ A
2 inundif A B A B = A
3 2 eqcomi A = A B A B
4 3 a1i φ A = A B A B
5 4 fveq2d φ vol * A = vol * A B A B
6 1 ssinss1d φ A B
7 1 ssdifssd φ A B
8 6 7 unssd φ A B A B
9 ovolcl A B A B vol * A B A B *
10 8 9 syl φ vol * A B A B *
11 pnfge vol * A B A B * vol * A B A B +∞
12 10 11 syl φ vol * A B A B +∞
13 12 adantr φ vol * A B = +∞ vol * A B A B +∞
14 oveq1 vol * A B = +∞ vol * A B + 𝑒 vol * A B = +∞ + 𝑒 vol * A B
15 14 adantl φ vol * A B = +∞ vol * A B + 𝑒 vol * A B = +∞ + 𝑒 vol * A B
16 ovolcl A B vol * A B *
17 7 16 syl φ vol * A B *
18 17 adantr φ vol * A B = +∞ vol * A B *
19 reex V
20 19 a1i φ V
21 20 1 ssexd φ A V
22 21 difexd φ A B V
23 elpwg A B V A B 𝒫 A B
24 22 23 syl φ A B 𝒫 A B
25 7 24 mpbird φ A B 𝒫
26 ovolf vol * : 𝒫 0 +∞
27 26 ffvelrni A B 𝒫 vol * A B 0 +∞
28 25 27 syl φ vol * A B 0 +∞
29 28 xrge0nemnfd φ vol * A B −∞
30 29 adantr φ vol * A B = +∞ vol * A B −∞
31 xaddpnf2 vol * A B * vol * A B −∞ +∞ + 𝑒 vol * A B = +∞
32 18 30 31 syl2anc φ vol * A B = +∞ +∞ + 𝑒 vol * A B = +∞
33 15 32 eqtr2d φ vol * A B = +∞ +∞ = vol * A B + 𝑒 vol * A B
34 13 33 breqtrd φ vol * A B = +∞ vol * A B A B vol * A B + 𝑒 vol * A B
35 simpl φ ¬ vol * A B = +∞ φ
36 20 6 sselpwd φ A B 𝒫
37 26 ffvelrni A B 𝒫 vol * A B 0 +∞
38 36 37 syl φ vol * A B 0 +∞
39 38 adantr φ ¬ vol * A B = +∞ vol * A B 0 +∞
40 neqne ¬ vol * A B = +∞ vol * A B +∞
41 40 adantl φ ¬ vol * A B = +∞ vol * A B +∞
42 ge0xrre vol * A B 0 +∞ vol * A B +∞ vol * A B
43 39 41 42 syl2anc φ ¬ vol * A B = +∞ vol * A B
44 12 adantr φ vol * A B = +∞ vol * A B A B +∞
45 oveq2 vol * A B = +∞ vol * A B + 𝑒 vol * A B = vol * A B + 𝑒 +∞
46 45 adantl φ vol * A B = +∞ vol * A B + 𝑒 vol * A B = vol * A B + 𝑒 +∞
47 ovolcl A B vol * A B *
48 6 47 syl φ vol * A B *
49 38 xrge0nemnfd φ vol * A B −∞
50 xaddpnf1 vol * A B * vol * A B −∞ vol * A B + 𝑒 +∞ = +∞
51 48 49 50 syl2anc φ vol * A B + 𝑒 +∞ = +∞
52 51 adantr φ vol * A B = +∞ vol * A B + 𝑒 +∞ = +∞
53 46 52 eqtr2d φ vol * A B = +∞ +∞ = vol * A B + 𝑒 vol * A B
54 44 53 breqtrd φ vol * A B = +∞ vol * A B A B vol * A B + 𝑒 vol * A B
55 54 adantlr φ vol * A B vol * A B = +∞ vol * A B A B vol * A B + 𝑒 vol * A B
56 simpll φ vol * A B ¬ vol * A B = +∞ φ
57 simplr φ vol * A B ¬ vol * A B = +∞ vol * A B
58 28 adantr φ ¬ vol * A B = +∞ vol * A B 0 +∞
59 neqne ¬ vol * A B = +∞ vol * A B +∞
60 59 adantl φ ¬ vol * A B = +∞ vol * A B +∞
61 ge0xrre vol * A B 0 +∞ vol * A B +∞ vol * A B
62 58 60 61 syl2anc φ ¬ vol * A B = +∞ vol * A B
63 62 adantlr φ vol * A B ¬ vol * A B = +∞ vol * A B
64 6 3ad2ant1 φ vol * A B vol * A B A B
65 simp2 φ vol * A B vol * A B vol * A B
66 7 3ad2ant1 φ vol * A B vol * A B A B
67 simp3 φ vol * A B vol * A B vol * A B
68 ovolun A B vol * A B A B vol * A B vol * A B A B vol * A B + vol * A B
69 64 65 66 67 68 syl22anc φ vol * A B vol * A B vol * A B A B vol * A B + vol * A B
70 rexadd vol * A B vol * A B vol * A B + 𝑒 vol * A B = vol * A B + vol * A B
71 70 eqcomd vol * A B vol * A B vol * A B + vol * A B = vol * A B + 𝑒 vol * A B
72 71 3adant1 φ vol * A B vol * A B vol * A B + vol * A B = vol * A B + 𝑒 vol * A B
73 69 72 breqtrd φ vol * A B vol * A B vol * A B A B vol * A B + 𝑒 vol * A B
74 56 57 63 73 syl3anc φ vol * A B ¬ vol * A B = +∞ vol * A B A B vol * A B + 𝑒 vol * A B
75 55 74 pm2.61dan φ vol * A B vol * A B A B vol * A B + 𝑒 vol * A B
76 35 43 75 syl2anc φ ¬ vol * A B = +∞ vol * A B A B vol * A B + 𝑒 vol * A B
77 34 76 pm2.61dan φ vol * A B A B vol * A B + 𝑒 vol * A B
78 5 77 eqbrtrd φ vol * A vol * A B + 𝑒 vol * A B