Metamath Proof Explorer


Theorem ovolsscl

Description: If a set is contained in another of bounded measure, it too is bounded. (Contributed by Mario Carneiro, 18-Mar-2014)

Ref Expression
Assertion ovolsscl A B B vol * B vol * A

Proof

Step Hyp Ref Expression
1 sstr A B B A
2 1 3adant3 A B B vol * B A
3 simp3 A B B vol * B vol * B
4 ovolss A B B vol * A vol * B
5 4 3adant3 A B B vol * B vol * A vol * B
6 ovollecl A vol * B vol * A vol * B vol * A
7 2 3 5 6 syl3anc A B B vol * B vol * A