Metamath Proof Explorer


Theorem ovolsslem

Description: Lemma for ovolss . (Contributed by Mario Carneiro, 16-Mar-2014) (Proof shortened by AV, 17-Sep-2020)

Ref Expression
Hypotheses ovolss.1 M = y * | f 2 A ran . f y = sup ran seq 1 + abs f * <
ovolss.2 N = y * | f 2 B ran . f y = sup ran seq 1 + abs f * <
Assertion ovolsslem A B B vol * A vol * B

Proof

Step Hyp Ref Expression
1 ovolss.1 M = y * | f 2 A ran . f y = sup ran seq 1 + abs f * <
2 ovolss.2 N = y * | f 2 B ran . f y = sup ran seq 1 + abs f * <
3 sstr2 A B B ran . f A ran . f
4 3 ad2antrr A B B y * B ran . f A ran . f
5 4 anim1d A B B y * B ran . f y = sup ran seq 1 + abs f * < A ran . f y = sup ran seq 1 + abs f * <
6 5 reximdv A B B y * f 2 B ran . f y = sup ran seq 1 + abs f * < f 2 A ran . f y = sup ran seq 1 + abs f * <
7 6 ss2rabdv A B B y * | f 2 B ran . f y = sup ran seq 1 + abs f * < y * | f 2 A ran . f y = sup ran seq 1 + abs f * <
8 7 2 1 3sstr4g A B B N M
9 sstr A B B A
10 1 ovolval A vol * A = sup M * <
11 10 adantr A x M vol * A = sup M * <
12 1 ssrab3 M *
13 infxrlb M * x M sup M * < x
14 12 13 mpan x M sup M * < x
15 14 adantl A x M sup M * < x
16 11 15 eqbrtrd A x M vol * A x
17 16 ralrimiva A x M vol * A x
18 9 17 syl A B B x M vol * A x
19 ssralv N M x M vol * A x x N vol * A x
20 8 18 19 sylc A B B x N vol * A x
21 2 ssrab3 N *
22 ovolcl A vol * A *
23 9 22 syl A B B vol * A *
24 infxrgelb N * vol * A * vol * A sup N * < x N vol * A x
25 21 23 24 sylancr A B B vol * A sup N * < x N vol * A x
26 20 25 mpbird A B B vol * A sup N * <
27 2 ovolval B vol * B = sup N * <
28 27 adantl A B B vol * B = sup N * <
29 26 28 breqtrrd A B B vol * A vol * B