Metamath Proof Explorer


Theorem ovolssnul

Description: A subset of a nullset is null. (Contributed by Mario Carneiro, 19-Mar-2014)

Ref Expression
Assertion ovolssnul A B B vol * B = 0 vol * A = 0

Proof

Step Hyp Ref Expression
1 ovolss A B B vol * A vol * B
2 1 3adant3 A B B vol * B = 0 vol * A vol * B
3 simp3 A B B vol * B = 0 vol * B = 0
4 2 3 breqtrd A B B vol * B = 0 vol * A 0
5 sstr A B B A
6 5 3adant3 A B B vol * B = 0 A
7 ovolge0 A 0 vol * A
8 6 7 syl A B B vol * B = 0 0 vol * A
9 ovolcl A vol * A *
10 6 9 syl A B B vol * B = 0 vol * A *
11 0xr 0 *
12 xrletri3 vol * A * 0 * vol * A = 0 vol * A 0 0 vol * A
13 10 11 12 sylancl A B B vol * B = 0 vol * A = 0 vol * A 0 0 vol * A
14 4 8 13 mpbir2and A B B vol * B = 0 vol * A = 0