Metamath Proof Explorer


Theorem ovolun

Description: The Lebesgue outer measure function is finitely sub-additive. (Unlike the stronger ovoliun , this does not require any choice principles.) (Contributed by Mario Carneiro, 12-Jun-2014)

Ref Expression
Assertion ovolun A vol * A B vol * B vol * A B vol * A + vol * B

Proof

Step Hyp Ref Expression
1 simpll A vol * A B vol * B x + A vol * A
2 simplr A vol * A B vol * B x + B vol * B
3 simpr A vol * A B vol * B x + x +
4 1 2 3 ovolunlem2 A vol * A B vol * B x + vol * A B vol * A + vol * B + x
5 4 ralrimiva A vol * A B vol * B x + vol * A B vol * A + vol * B + x
6 unss A B A B
7 6 biimpi A B A B
8 7 ad2ant2r A vol * A B vol * B A B
9 ovolcl A B vol * A B *
10 8 9 syl A vol * A B vol * B vol * A B *
11 readdcl vol * A vol * B vol * A + vol * B
12 11 ad2ant2l A vol * A B vol * B vol * A + vol * B
13 xralrple vol * A B * vol * A + vol * B vol * A B vol * A + vol * B x + vol * A B vol * A + vol * B + x
14 10 12 13 syl2anc A vol * A B vol * B vol * A B vol * A + vol * B x + vol * A B vol * A + vol * B + x
15 5 14 mpbird A vol * A B vol * B vol * A B vol * A + vol * B