Metamath Proof Explorer


Theorem ovolunlem1

Description: Lemma for ovolun . (Contributed by Mario Carneiro, 12-Jun-2014)

Ref Expression
Hypotheses ovolun.a φ A vol * A
ovolun.b φ B vol * B
ovolun.c φ C +
ovolun.s S = seq 1 + abs F
ovolun.t T = seq 1 + abs G
ovolun.u U = seq 1 + abs H
ovolun.f1 φ F 2
ovolun.f2 φ A ran . F
ovolun.f3 φ sup ran S * < vol * A + C 2
ovolun.g1 φ G 2
ovolun.g2 φ B ran . G
ovolun.g3 φ sup ran T * < vol * B + C 2
ovolun.h H = n if n 2 G n 2 F n + 1 2
Assertion ovolunlem1 φ vol * A B vol * A + vol * B + C

Proof

Step Hyp Ref Expression
1 ovolun.a φ A vol * A
2 ovolun.b φ B vol * B
3 ovolun.c φ C +
4 ovolun.s S = seq 1 + abs F
5 ovolun.t T = seq 1 + abs G
6 ovolun.u U = seq 1 + abs H
7 ovolun.f1 φ F 2
8 ovolun.f2 φ A ran . F
9 ovolun.f3 φ sup ran S * < vol * A + C 2
10 ovolun.g1 φ G 2
11 ovolun.g2 φ B ran . G
12 ovolun.g3 φ sup ran T * < vol * B + C 2
13 ovolun.h H = n if n 2 G n 2 F n + 1 2
14 1 simpld φ A
15 2 simpld φ B
16 14 15 unssd φ A B
17 elovolmlem G 2 G : 2
18 10 17 sylib φ G : 2
19 18 adantr φ n G : 2
20 19 ffvelrnda φ n n 2 G n 2 2
21 nneo n n 2 ¬ n + 1 2
22 21 adantl φ n n 2 ¬ n + 1 2
23 22 con2bid φ n n + 1 2 ¬ n 2
24 23 biimpar φ n ¬ n 2 n + 1 2
25 elovolmlem F 2 F : 2
26 7 25 sylib φ F : 2
27 26 adantr φ n F : 2
28 27 ffvelrnda φ n n + 1 2 F n + 1 2 2
29 24 28 syldan φ n ¬ n 2 F n + 1 2 2
30 20 29 ifclda φ n if n 2 G n 2 F n + 1 2 2
31 30 13 fmptd φ H : 2
32 eqid abs H = abs H
33 32 6 ovolsf H : 2 U : 0 +∞
34 31 33 syl φ U : 0 +∞
35 rge0ssre 0 +∞
36 fss U : 0 +∞ 0 +∞ U :
37 34 35 36 sylancl φ U :
38 37 frnd φ ran U
39 1nn 1
40 1z 1
41 seqfn 1 seq 1 + abs H Fn 1
42 40 41 mp1i φ seq 1 + abs H Fn 1
43 6 fneq1i U Fn seq 1 + abs H Fn
44 nnuz = 1
45 44 fneq2i seq 1 + abs H Fn seq 1 + abs H Fn 1
46 43 45 bitri U Fn seq 1 + abs H Fn 1
47 42 46 sylibr φ U Fn
48 47 fndmd φ dom U =
49 39 48 eleqtrrid φ 1 dom U
50 49 ne0d φ dom U
51 dm0rn0 dom U = ran U =
52 51 necon3bii dom U ran U
53 50 52 sylib φ ran U
54 1 simprd φ vol * A
55 2 simprd φ vol * B
56 54 55 readdcld φ vol * A + vol * B
57 3 rpred φ C
58 56 57 readdcld φ vol * A + vol * B + C
59 1 2 3 4 5 6 7 8 9 10 11 12 13 ovolunlem1a φ k U k vol * A + vol * B + C
60 59 ralrimiva φ k U k vol * A + vol * B + C
61 breq1 z = U k z vol * A + vol * B + C U k vol * A + vol * B + C
62 61 ralrn U Fn z ran U z vol * A + vol * B + C k U k vol * A + vol * B + C
63 47 62 syl φ z ran U z vol * A + vol * B + C k U k vol * A + vol * B + C
64 60 63 mpbird φ z ran U z vol * A + vol * B + C
65 brralrspcev vol * A + vol * B + C z ran U z vol * A + vol * B + C k z ran U z k
66 58 64 65 syl2anc φ k z ran U z k
67 ressxr *
68 38 67 sstrdi φ ran U *
69 supxrbnd2 ran U * k z ran U z k sup ran U * < < +∞
70 68 69 syl φ k z ran U z k sup ran U * < < +∞
71 66 70 mpbid φ sup ran U * < < +∞
72 supxrbnd ran U ran U sup ran U * < < +∞ sup ran U * <
73 38 53 71 72 syl3anc φ sup ran U * <
74 nncn m m
75 74 adantl φ m m
76 1cnd φ m 1
77 75 2timesd φ m 2 m = m + m
78 77 oveq1d φ m 2 m 1 = m + m - 1
79 75 75 76 78 assraddsubd φ m 2 m 1 = m + m - 1
80 simpr φ m m
81 nnm1nn0 m m 1 0
82 nnnn0addcl m m 1 0 m + m - 1
83 80 81 82 syl2anc2 φ m m + m - 1
84 79 83 eqeltrd φ m 2 m 1
85 oveq1 n = 2 m 1 n 2 = 2 m 1 2
86 85 eleq1d n = 2 m 1 n 2 2 m 1 2
87 85 fveq2d n = 2 m 1 G n 2 = G 2 m 1 2
88 oveq1 n = 2 m 1 n + 1 = 2 m - 1 + 1
89 88 fvoveq1d n = 2 m 1 F n + 1 2 = F 2 m - 1 + 1 2
90 86 87 89 ifbieq12d n = 2 m 1 if n 2 G n 2 F n + 1 2 = if 2 m 1 2 G 2 m 1 2 F 2 m - 1 + 1 2
91 fvex G 2 m 1 2 V
92 fvex F 2 m - 1 + 1 2 V
93 91 92 ifex if 2 m 1 2 G 2 m 1 2 F 2 m - 1 + 1 2 V
94 90 13 93 fvmpt 2 m 1 H 2 m 1 = if 2 m 1 2 G 2 m 1 2 F 2 m - 1 + 1 2
95 84 94 syl φ m H 2 m 1 = if 2 m 1 2 G 2 m 1 2 F 2 m - 1 + 1 2
96 2nn 2
97 nnmulcl 2 m 2 m
98 96 80 97 sylancr φ m 2 m
99 98 nncnd φ m 2 m
100 ax-1cn 1
101 npcan 2 m 1 2 m - 1 + 1 = 2 m
102 99 100 101 sylancl φ m 2 m - 1 + 1 = 2 m
103 102 oveq1d φ m 2 m - 1 + 1 2 = 2 m 2
104 2cn 2
105 2ne0 2 0
106 divcan3 m 2 2 0 2 m 2 = m
107 104 105 106 mp3an23 m 2 m 2 = m
108 75 107 syl φ m 2 m 2 = m
109 103 108 eqtrd φ m 2 m - 1 + 1 2 = m
110 109 80 eqeltrd φ m 2 m - 1 + 1 2
111 nneo 2 m 1 2 m 1 2 ¬ 2 m - 1 + 1 2
112 84 111 syl φ m 2 m 1 2 ¬ 2 m - 1 + 1 2
113 112 con2bid φ m 2 m - 1 + 1 2 ¬ 2 m 1 2
114 110 113 mpbid φ m ¬ 2 m 1 2
115 114 iffalsed φ m if 2 m 1 2 G 2 m 1 2 F 2 m - 1 + 1 2 = F 2 m - 1 + 1 2
116 109 fveq2d φ m F 2 m - 1 + 1 2 = F m
117 95 115 116 3eqtrd φ m H 2 m 1 = F m
118 fveqeq2 k = 2 m 1 H k = F m H 2 m 1 = F m
119 118 rspcev 2 m 1 H 2 m 1 = F m k H k = F m
120 84 117 119 syl2anc φ m k H k = F m
121 fveq2 H k = F m 1 st H k = 1 st F m
122 121 breq1d H k = F m 1 st H k < z 1 st F m < z
123 fveq2 H k = F m 2 nd H k = 2 nd F m
124 123 breq2d H k = F m z < 2 nd H k z < 2 nd F m
125 122 124 anbi12d H k = F m 1 st H k < z z < 2 nd H k 1 st F m < z z < 2 nd F m
126 125 biimprcd 1 st F m < z z < 2 nd F m H k = F m 1 st H k < z z < 2 nd H k
127 126 reximdv 1 st F m < z z < 2 nd F m k H k = F m k 1 st H k < z z < 2 nd H k
128 120 127 syl5com φ m 1 st F m < z z < 2 nd F m k 1 st H k < z z < 2 nd H k
129 128 rexlimdva φ m 1 st F m < z z < 2 nd F m k 1 st H k < z z < 2 nd H k
130 129 ralimdv φ z A m 1 st F m < z z < 2 nd F m z A k 1 st H k < z z < 2 nd H k
131 ovolfioo A F : 2 A ran . F z A m 1 st F m < z z < 2 nd F m
132 14 26 131 syl2anc φ A ran . F z A m 1 st F m < z z < 2 nd F m
133 ovolfioo A H : 2 A ran . H z A k 1 st H k < z z < 2 nd H k
134 14 31 133 syl2anc φ A ran . H z A k 1 st H k < z z < 2 nd H k
135 130 132 134 3imtr4d φ A ran . F A ran . H
136 8 135 mpd φ A ran . H
137 oveq1 n = 2 m n 2 = 2 m 2
138 137 eleq1d n = 2 m n 2 2 m 2
139 137 fveq2d n = 2 m G n 2 = G 2 m 2
140 oveq1 n = 2 m n + 1 = 2 m + 1
141 140 fvoveq1d n = 2 m F n + 1 2 = F 2 m + 1 2
142 138 139 141 ifbieq12d n = 2 m if n 2 G n 2 F n + 1 2 = if 2 m 2 G 2 m 2 F 2 m + 1 2
143 fvex G 2 m 2 V
144 fvex F 2 m + 1 2 V
145 143 144 ifex if 2 m 2 G 2 m 2 F 2 m + 1 2 V
146 142 13 145 fvmpt 2 m H 2 m = if 2 m 2 G 2 m 2 F 2 m + 1 2
147 98 146 syl φ m H 2 m = if 2 m 2 G 2 m 2 F 2 m + 1 2
148 108 80 eqeltrd φ m 2 m 2
149 148 iftrued φ m if 2 m 2 G 2 m 2 F 2 m + 1 2 = G 2 m 2
150 108 fveq2d φ m G 2 m 2 = G m
151 147 149 150 3eqtrd φ m H 2 m = G m
152 fveqeq2 k = 2 m H k = G m H 2 m = G m
153 152 rspcev 2 m H 2 m = G m k H k = G m
154 98 151 153 syl2anc φ m k H k = G m
155 fveq2 H k = G m 1 st H k = 1 st G m
156 155 breq1d H k = G m 1 st H k < z 1 st G m < z
157 fveq2 H k = G m 2 nd H k = 2 nd G m
158 157 breq2d H k = G m z < 2 nd H k z < 2 nd G m
159 156 158 anbi12d H k = G m 1 st H k < z z < 2 nd H k 1 st G m < z z < 2 nd G m
160 159 biimprcd 1 st G m < z z < 2 nd G m H k = G m 1 st H k < z z < 2 nd H k
161 160 reximdv 1 st G m < z z < 2 nd G m k H k = G m k 1 st H k < z z < 2 nd H k
162 154 161 syl5com φ m 1 st G m < z z < 2 nd G m k 1 st H k < z z < 2 nd H k
163 162 rexlimdva φ m 1 st G m < z z < 2 nd G m k 1 st H k < z z < 2 nd H k
164 163 ralimdv φ z B m 1 st G m < z z < 2 nd G m z B k 1 st H k < z z < 2 nd H k
165 ovolfioo B G : 2 B ran . G z B m 1 st G m < z z < 2 nd G m
166 15 18 165 syl2anc φ B ran . G z B m 1 st G m < z z < 2 nd G m
167 ovolfioo B H : 2 B ran . H z B k 1 st H k < z z < 2 nd H k
168 15 31 167 syl2anc φ B ran . H z B k 1 st H k < z z < 2 nd H k
169 164 166 168 3imtr4d φ B ran . G B ran . H
170 11 169 mpd φ B ran . H
171 136 170 unssd φ A B ran . H
172 6 ovollb H : 2 A B ran . H vol * A B sup ran U * <
173 31 171 172 syl2anc φ vol * A B sup ran U * <
174 ovollecl A B sup ran U * < vol * A B sup ran U * < vol * A B
175 16 73 173 174 syl3anc φ vol * A B
176 58 rexrd φ vol * A + vol * B + C *
177 supxrleub ran U * vol * A + vol * B + C * sup ran U * < vol * A + vol * B + C z ran U z vol * A + vol * B + C
178 68 176 177 syl2anc φ sup ran U * < vol * A + vol * B + C z ran U z vol * A + vol * B + C
179 64 178 mpbird φ sup ran U * < vol * A + vol * B + C
180 175 73 58 173 179 letrd φ vol * A B vol * A + vol * B + C