Metamath Proof Explorer


Theorem ovolunlem1a

Description: Lemma for ovolun . (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Hypotheses ovolun.a φAvol*A
ovolun.b φBvol*B
ovolun.c φC+
ovolun.s S=seq1+absF
ovolun.t T=seq1+absG
ovolun.u U=seq1+absH
ovolun.f1 φF2
ovolun.f2 φAran.F
ovolun.f3 φsupranS*<vol*A+C2
ovolun.g1 φG2
ovolun.g2 φBran.G
ovolun.g3 φsupranT*<vol*B+C2
ovolun.h H=nifn2Gn2Fn+12
Assertion ovolunlem1a φkUkvol*A+vol*B+C

Proof

Step Hyp Ref Expression
1 ovolun.a φAvol*A
2 ovolun.b φBvol*B
3 ovolun.c φC+
4 ovolun.s S=seq1+absF
5 ovolun.t T=seq1+absG
6 ovolun.u U=seq1+absH
7 ovolun.f1 φF2
8 ovolun.f2 φAran.F
9 ovolun.f3 φsupranS*<vol*A+C2
10 ovolun.g1 φG2
11 ovolun.g2 φBran.G
12 ovolun.g3 φsupranT*<vol*B+C2
13 ovolun.h H=nifn2Gn2Fn+12
14 elovolmlem G2G:2
15 10 14 sylib φG:2
16 15 adantr φnG:2
17 16 ffvelcdmda φnn2Gn22
18 nneo nn2¬n+12
19 18 adantl φnn2¬n+12
20 19 con2bid φnn+12¬n2
21 20 biimpar φn¬n2n+12
22 elovolmlem F2F:2
23 7 22 sylib φF:2
24 23 adantr φnF:2
25 24 ffvelcdmda φnn+12Fn+122
26 21 25 syldan φn¬n2Fn+122
27 17 26 ifclda φnifn2Gn2Fn+122
28 27 13 fmptd φH:2
29 eqid absH=absH
30 29 6 ovolsf H:2U:0+∞
31 28 30 syl φU:0+∞
32 rge0ssre 0+∞
33 fss U:0+∞0+∞U:
34 31 32 33 sylancl φU:
35 34 ffvelcdmda φkUk
36 2nn 2
37 peano2nn kk+1
38 37 adantl φkk+1
39 38 nnred φkk+1
40 39 rehalfcld φkk+12
41 40 flcld φkk+12
42 ax-1cn 1
43 42 2timesi 21=1+1
44 nnge1 k1k
45 44 adantl φk1k
46 nnre kk
47 46 adantl φkk
48 1re 1
49 leadd1 1k11k1+1k+1
50 48 48 49 mp3an13 k1k1+1k+1
51 47 50 syl φk1k1+1k+1
52 45 51 mpbid φk1+1k+1
53 43 52 eqbrtrid φk21k+1
54 2re 2
55 2pos 0<2
56 54 55 pm3.2i 20<2
57 lemuldiv2 1k+120<221k+11k+12
58 48 56 57 mp3an13 k+121k+11k+12
59 39 58 syl φk21k+11k+12
60 53 59 mpbid φk1k+12
61 1z 1
62 flge k+1211k+121k+12
63 40 61 62 sylancl φk1k+121k+12
64 60 63 mpbid φk1k+12
65 elnnz1 k+12k+121k+12
66 41 64 65 sylanbrc φkk+12
67 nnmulcl 2k+122k+12
68 36 66 67 sylancr φk2k+12
69 34 ffvelcdmda φ2k+12U2k+12
70 68 69 syldan φkU2k+12
71 1 simprd φvol*A
72 2 simprd φvol*B
73 71 72 readdcld φvol*A+vol*B
74 3 rpred φC
75 73 74 readdcld φvol*A+vol*B+C
76 75 adantr φkvol*A+vol*B+C
77 simpr φkk
78 nnuz =1
79 77 78 eleqtrdi φkk1
80 nnz kk
81 80 adantl φkk
82 flhalf kk2k+12
83 81 82 syl φkk2k+12
84 nnz 2k+122k+12
85 eluz k2k+122k+12kk2k+12
86 80 84 85 syl2an k2k+122k+12kk2k+12
87 77 68 86 syl2anc φk2k+12kk2k+12
88 83 87 mpbird φk2k+12k
89 elfznn j12k+12j
90 29 ovolfsf H:2absH:0+∞
91 28 90 syl φabsH:0+∞
92 91 adantr φkabsH:0+∞
93 92 ffvelcdmda φkjabsHj0+∞
94 elrege0 absHj0+∞absHj0absHj
95 93 94 sylib φkjabsHj0absHj
96 95 simpld φkjabsHj
97 89 96 sylan2 φkj12k+12absHj
98 elfzuz jk+12k+12jk+1
99 eluznn k+1jk+1j
100 38 98 99 syl2an φkjk+12k+12j
101 95 simprd φkj0absHj
102 100 101 syldan φkjk+12k+120absHj
103 79 88 97 102 sermono φkseq1+absHkseq1+absH2k+12
104 6 fveq1i Uk=seq1+absHk
105 6 fveq1i U2k+12=seq1+absH2k+12
106 103 104 105 3brtr4g φkUkU2k+12
107 eqid absF=absF
108 107 4 ovolsf F:2S:0+∞
109 23 108 syl φS:0+∞
110 109 frnd φranS0+∞
111 110 32 sstrdi φranS
112 111 adantr φkranS
113 109 ffnd φSFn
114 fnfvelrn SFnk+12Sk+12ranS
115 113 66 114 syl2an2r φkSk+12ranS
116 112 115 sseldd φkSk+12
117 eqid absG=absG
118 117 5 ovolsf G:2T:0+∞
119 15 118 syl φT:0+∞
120 119 frnd φranT0+∞
121 120 32 sstrdi φranT
122 121 adantr φkranT
123 119 ffnd φTFn
124 fnfvelrn TFnk+12Tk+12ranT
125 123 66 124 syl2an2r φkTk+12ranT
126 122 125 sseldd φkTk+12
127 74 rehalfcld φC2
128 71 127 readdcld φvol*A+C2
129 128 adantr φkvol*A+C2
130 72 127 readdcld φvol*B+C2
131 130 adantr φkvol*B+C2
132 ressxr *
133 111 132 sstrdi φranS*
134 supxrcl ranS*supranS*<*
135 133 134 syl φsupranS*<*
136 1nn 1
137 109 fdmd φdomS=
138 136 137 eleqtrrid φ1domS
139 138 ne0d φdomS
140 dm0rn0 domS=ranS=
141 140 necon3bii domSranS
142 139 141 sylib φranS
143 supxrgtmnf ranSranS−∞<supranS*<
144 111 142 143 syl2anc φ−∞<supranS*<
145 xrre supranS*<*vol*A+C2−∞<supranS*<supranS*<vol*A+C2supranS*<
146 135 128 144 9 145 syl22anc φsupranS*<
147 146 adantr φksupranS*<
148 supxrub ranS*Sk+12ranSSk+12supranS*<
149 133 115 148 syl2an2r φkSk+12supranS*<
150 9 adantr φksupranS*<vol*A+C2
151 116 147 129 149 150 letrd φkSk+12vol*A+C2
152 121 132 sstrdi φranT*
153 supxrcl ranT*supranT*<*
154 152 153 syl φsupranT*<*
155 119 fdmd φdomT=
156 136 155 eleqtrrid φ1domT
157 156 ne0d φdomT
158 dm0rn0 domT=ranT=
159 158 necon3bii domTranT
160 157 159 sylib φranT
161 supxrgtmnf ranTranT−∞<supranT*<
162 121 160 161 syl2anc φ−∞<supranT*<
163 xrre supranT*<*vol*B+C2−∞<supranT*<supranT*<vol*B+C2supranT*<
164 154 130 162 12 163 syl22anc φsupranT*<
165 164 adantr φksupranT*<
166 supxrub ranT*Tk+12ranTTk+12supranT*<
167 152 125 166 syl2an2r φkTk+12supranT*<
168 12 adantr φksupranT*<vol*B+C2
169 126 165 131 167 168 letrd φkTk+12vol*B+C2
170 116 126 129 131 151 169 le2addd φkSk+12+Tk+12vol*A+C2+vol*B+C2
171 oveq2 z=12z=21
172 171 fveq2d z=1U2z=U21
173 fveq2 z=1Sz=S1
174 fveq2 z=1Tz=T1
175 173 174 oveq12d z=1Sz+Tz=S1+T1
176 172 175 eqeq12d z=1U2z=Sz+TzU21=S1+T1
177 176 imbi2d z=1φU2z=Sz+TzφU21=S1+T1
178 oveq2 z=k2z=2k
179 178 fveq2d z=kU2z=U2k
180 fveq2 z=kSz=Sk
181 fveq2 z=kTz=Tk
182 180 181 oveq12d z=kSz+Tz=Sk+Tk
183 179 182 eqeq12d z=kU2z=Sz+TzU2k=Sk+Tk
184 183 imbi2d z=kφU2z=Sz+TzφU2k=Sk+Tk
185 oveq2 z=k+12z=2k+1
186 185 fveq2d z=k+1U2z=U2k+1
187 fveq2 z=k+1Sz=Sk+1
188 fveq2 z=k+1Tz=Tk+1
189 187 188 oveq12d z=k+1Sz+Tz=Sk+1+Tk+1
190 186 189 eqeq12d z=k+1U2z=Sz+TzU2k+1=Sk+1+Tk+1
191 190 imbi2d z=k+1φU2z=Sz+TzφU2k+1=Sk+1+Tk+1
192 oveq2 z=k+122z=2k+12
193 192 fveq2d z=k+12U2z=U2k+12
194 fveq2 z=k+12Sz=Sk+12
195 fveq2 z=k+12Tz=Tk+12
196 194 195 oveq12d z=k+12Sz+Tz=Sk+12+Tk+12
197 193 196 eqeq12d z=k+12U2z=Sz+TzU2k+12=Sk+12+Tk+12
198 197 imbi2d z=k+12φU2z=Sz+TzφU2k+12=Sk+12+Tk+12
199 6 fveq1i U21=seq1+absH21
200 136 a1i φ1
201 29 ovolfsval H:21absH1=2ndH11stH1
202 28 136 201 sylancl φabsH1=2ndH11stH1
203 halfnz ¬12
204 nnz n2n2
205 oveq1 n=1n2=12
206 205 eleq1d n=1n212
207 204 206 imbitrid n=1n212
208 203 207 mtoi n=1¬n2
209 208 iffalsed n=1ifn2Gn2Fn+12=Fn+12
210 oveq1 n=1n+1=1+1
211 df-2 2=1+1
212 210 211 eqtr4di n=1n+1=2
213 212 oveq1d n=1n+12=22
214 2div2e1 22=1
215 213 214 eqtrdi n=1n+12=1
216 215 fveq2d n=1Fn+12=F1
217 209 216 eqtrd n=1ifn2Gn2Fn+12=F1
218 fvex F1V
219 217 13 218 fvmpt 1H1=F1
220 136 219 ax-mp H1=F1
221 220 fveq2i 2ndH1=2ndF1
222 220 fveq2i 1stH1=1stF1
223 221 222 oveq12i 2ndH11stH1=2ndF11stF1
224 202 223 eqtrdi φabsH1=2ndF11stF1
225 61 224 seq1i φseq1+absH1=2ndF11stF1
226 2t1e2 21=2
227 226 fveq2i absH21=absH2
228 29 ovolfsval H:22absH2=2ndH21stH2
229 28 36 228 sylancl φabsH2=2ndH21stH2
230 oveq1 n=2n2=22
231 230 214 eqtrdi n=2n2=1
232 231 136 eqeltrdi n=2n2
233 232 iftrued n=2ifn2Gn2Fn+12=Gn2
234 231 fveq2d n=2Gn2=G1
235 233 234 eqtrd n=2ifn2Gn2Fn+12=G1
236 fvex G1V
237 235 13 236 fvmpt 2H2=G1
238 36 237 ax-mp H2=G1
239 238 fveq2i 2ndH2=2ndG1
240 238 fveq2i 1stH2=1stG1
241 239 240 oveq12i 2ndH21stH2=2ndG11stG1
242 229 241 eqtrdi φabsH2=2ndG11stG1
243 227 242 eqtrid φabsH21=2ndG11stG1
244 78 200 43 225 243 seqp1d φseq1+absH21=2ndF11stF1+2ndG1-1stG1
245 199 244 eqtrid φU21=2ndF11stF1+2ndG1-1stG1
246 4 fveq1i S1=seq1+absF1
247 107 ovolfsval F:21absF1=2ndF11stF1
248 23 136 247 sylancl φabsF1=2ndF11stF1
249 61 248 seq1i φseq1+absF1=2ndF11stF1
250 246 249 eqtrid φS1=2ndF11stF1
251 5 fveq1i T1=seq1+absG1
252 117 ovolfsval G:21absG1=2ndG11stG1
253 15 136 252 sylancl φabsG1=2ndG11stG1
254 61 253 seq1i φseq1+absG1=2ndG11stG1
255 251 254 eqtrid φT1=2ndG11stG1
256 250 255 oveq12d φS1+T1=2ndF11stF1+2ndG1-1stG1
257 245 256 eqtr4d φU21=S1+T1
258 oveq1 U2k=Sk+TkU2k+absFk+1+absGk+1=Sk+Tk+absFk+1+absGk+1
259 43 oveq2i 2k+21=2k+1+1
260 2cnd φk2
261 47 recnd φkk
262 1cnd φk1
263 260 261 262 adddid φk2k+1=2k+21
264 nnmulcl 2k2k
265 36 264 mpan k2k
266 265 adantl φk2k
267 266 nncnd φk2k
268 267 262 262 addassd φk2k+1+1=2k+1+1
269 259 263 268 3eqtr4a φk2k+1=2k+1+1
270 269 fveq2d φkU2k+1=U2k+1+1
271 6 fveq1i U2k+1+1=seq1+absH2k+1+1
272 266 peano2nnd φk2k+1
273 272 78 eleqtrdi φk2k+11
274 seqp1 2k+11seq1+absH2k+1+1=seq1+absH2k+1+absH2k+1+1
275 273 274 syl φkseq1+absH2k+1+1=seq1+absH2k+1+absH2k+1+1
276 266 78 eleqtrdi φk2k1
277 seqp1 2k1seq1+absH2k+1=seq1+absH2k+absH2k+1
278 276 277 syl φkseq1+absH2k+1=seq1+absH2k+absH2k+1
279 6 fveq1i U2k=seq1+absH2k
280 279 a1i φkU2k=seq1+absH2k
281 oveq1 n=2k+1n2=2k+12
282 281 eleq1d n=2k+1n22k+12
283 281 fveq2d n=2k+1Gn2=G2k+12
284 oveq1 n=2k+1n+1=2k+1+1
285 284 fvoveq1d n=2k+1Fn+12=F2k+1+12
286 282 283 285 ifbieq12d n=2k+1ifn2Gn2Fn+12=if2k+12G2k+12F2k+1+12
287 fvex G2k+12V
288 fvex F2k+1+12V
289 287 288 ifex if2k+12G2k+12F2k+1+12V
290 286 13 289 fvmpt 2k+1H2k+1=if2k+12G2k+12F2k+1+12
291 272 290 syl φkH2k+1=if2k+12G2k+12F2k+1+12
292 2ne0 20
293 292 a1i φk20
294 261 260 293 divcan3d φk2k2=k
295 294 77 eqeltrd φk2k2
296 nneo 2k2k2¬2k+12
297 266 296 syl φk2k2¬2k+12
298 295 297 mpbid φk¬2k+12
299 298 iffalsed φkif2k+12G2k+12F2k+1+12=F2k+1+12
300 269 oveq1d φk2k+12=2k+1+12
301 38 nncnd φkk+1
302 2cn 2
303 divcan3 k+12202k+12=k+1
304 302 292 303 mp3an23 k+12k+12=k+1
305 301 304 syl φk2k+12=k+1
306 300 305 eqtr3d φk2k+1+12=k+1
307 306 fveq2d φkF2k+1+12=Fk+1
308 291 299 307 3eqtrd φkH2k+1=Fk+1
309 308 fveq2d φk2ndH2k+1=2ndFk+1
310 308 fveq2d φk1stH2k+1=1stFk+1
311 309 310 oveq12d φk2ndH2k+11stH2k+1=2ndFk+11stFk+1
312 29 ovolfsval H:22k+1absH2k+1=2ndH2k+11stH2k+1
313 28 272 312 syl2an2r φkabsH2k+1=2ndH2k+11stH2k+1
314 107 ovolfsval F:2k+1absFk+1=2ndFk+11stFk+1
315 23 37 314 syl2an φkabsFk+1=2ndFk+11stFk+1
316 311 313 315 3eqtr4rd φkabsFk+1=absH2k+1
317 280 316 oveq12d φkU2k+absFk+1=seq1+absH2k+absH2k+1
318 278 317 eqtr4d φkseq1+absH2k+1=U2k+absFk+1
319 269 fveq2d φkH2k+1=H2k+1+1
320 272 peano2nnd φk2k+1+1
321 269 320 eqeltrd φk2k+1
322 oveq1 n=2k+1n2=2k+12
323 322 eleq1d n=2k+1n22k+12
324 322 fveq2d n=2k+1Gn2=G2k+12
325 oveq1 n=2k+1n+1=2k+1+1
326 325 fvoveq1d n=2k+1Fn+12=F2k+1+12
327 323 324 326 ifbieq12d n=2k+1ifn2Gn2Fn+12=if2k+12G2k+12F2k+1+12
328 fvex G2k+12V
329 fvex F2k+1+12V
330 328 329 ifex if2k+12G2k+12F2k+1+12V
331 327 13 330 fvmpt 2k+1H2k+1=if2k+12G2k+12F2k+1+12
332 321 331 syl φkH2k+1=if2k+12G2k+12F2k+1+12
333 305 38 eqeltrd φk2k+12
334 333 iftrued φkif2k+12G2k+12F2k+1+12=G2k+12
335 305 fveq2d φkG2k+12=Gk+1
336 332 334 335 3eqtrd φkH2k+1=Gk+1
337 319 336 eqtr3d φkH2k+1+1=Gk+1
338 337 fveq2d φk2ndH2k+1+1=2ndGk+1
339 337 fveq2d φk1stH2k+1+1=1stGk+1
340 338 339 oveq12d φk2ndH2k+1+11stH2k+1+1=2ndGk+11stGk+1
341 29 ovolfsval H:22k+1+1absH2k+1+1=2ndH2k+1+11stH2k+1+1
342 28 320 341 syl2an2r φkabsH2k+1+1=2ndH2k+1+11stH2k+1+1
343 117 ovolfsval G:2k+1absGk+1=2ndGk+11stGk+1
344 15 37 343 syl2an φkabsGk+1=2ndGk+11stGk+1
345 340 342 344 3eqtr4d φkabsH2k+1+1=absGk+1
346 318 345 oveq12d φkseq1+absH2k+1+absH2k+1+1=U2k+absFk+1+absGk+1
347 275 346 eqtrd φkseq1+absH2k+1+1=U2k+absFk+1+absGk+1
348 271 347 eqtrid φkU2k+1+1=U2k+absFk+1+absGk+1
349 ffvelcdm U:0+∞2kU2k0+∞
350 31 265 349 syl2an φkU2k0+∞
351 32 350 sselid φkU2k
352 351 recnd φkU2k
353 107 ovolfsf F:2absF:0+∞
354 23 353 syl φabsF:0+∞
355 ffvelcdm absF:0+∞k+1absFk+10+∞
356 354 37 355 syl2an φkabsFk+10+∞
357 32 356 sselid φkabsFk+1
358 357 recnd φkabsFk+1
359 117 ovolfsf G:2absG:0+∞
360 15 359 syl φabsG:0+∞
361 ffvelcdm absG:0+∞k+1absGk+10+∞
362 360 37 361 syl2an φkabsGk+10+∞
363 32 362 sselid φkabsGk+1
364 363 recnd φkabsGk+1
365 352 358 364 addassd φkU2k+absFk+1+absGk+1=U2k+absFk+1+absGk+1
366 270 348 365 3eqtrd φkU2k+1=U2k+absFk+1+absGk+1
367 seqp1 k1seq1+absFk+1=seq1+absFk+absFk+1
368 79 367 syl φkseq1+absFk+1=seq1+absFk+absFk+1
369 4 fveq1i Sk+1=seq1+absFk+1
370 4 fveq1i Sk=seq1+absFk
371 370 oveq1i Sk+absFk+1=seq1+absFk+absFk+1
372 368 369 371 3eqtr4g φkSk+1=Sk+absFk+1
373 seqp1 k1seq1+absGk+1=seq1+absGk+absGk+1
374 79 373 syl φkseq1+absGk+1=seq1+absGk+absGk+1
375 5 fveq1i Tk+1=seq1+absGk+1
376 5 fveq1i Tk=seq1+absGk
377 376 oveq1i Tk+absGk+1=seq1+absGk+absGk+1
378 374 375 377 3eqtr4g φkTk+1=Tk+absGk+1
379 372 378 oveq12d φkSk+1+Tk+1=Sk+absFk+1+Tk+absGk+1
380 109 ffvelcdmda φkSk0+∞
381 32 380 sselid φkSk
382 381 recnd φkSk
383 119 ffvelcdmda φkTk0+∞
384 32 383 sselid φkTk
385 384 recnd φkTk
386 382 358 385 364 add4d φkSk+absFk+1+Tk+absGk+1=Sk+Tk+absFk+1+absGk+1
387 379 386 eqtrd φkSk+1+Tk+1=Sk+Tk+absFk+1+absGk+1
388 366 387 eqeq12d φkU2k+1=Sk+1+Tk+1U2k+absFk+1+absGk+1=Sk+Tk+absFk+1+absGk+1
389 258 388 imbitrrid φkU2k=Sk+TkU2k+1=Sk+1+Tk+1
390 389 expcom kφU2k=Sk+TkU2k+1=Sk+1+Tk+1
391 390 a2d kφU2k=Sk+TkφU2k+1=Sk+1+Tk+1
392 177 184 191 198 257 391 nnind k+12φU2k+12=Sk+12+Tk+12
393 392 impcom φk+12U2k+12=Sk+12+Tk+12
394 66 393 syldan φkU2k+12=Sk+12+Tk+12
395 71 adantr φkvol*A
396 395 recnd φkvol*A
397 74 adantr φkC
398 397 rehalfcld φkC2
399 398 recnd φkC2
400 72 adantr φkvol*B
401 400 recnd φkvol*B
402 396 399 401 399 add4d φkvol*A+C2+vol*B+C2=vol*A+vol*B+C2+C2
403 397 recnd φkC
404 403 2halvesd φkC2+C2=C
405 404 oveq2d φkvol*A+vol*B+C2+C2=vol*A+vol*B+C
406 402 405 eqtr2d φkvol*A+vol*B+C=vol*A+C2+vol*B+C2
407 170 394 406 3brtr4d φkU2k+12vol*A+vol*B+C
408 35 70 76 106 407 letrd φkUkvol*A+vol*B+C