Metamath Proof Explorer


Theorem ovolunlem1a

Description: Lemma for ovolun . (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Hypotheses ovolun.a φ A vol * A
ovolun.b φ B vol * B
ovolun.c φ C +
ovolun.s S = seq 1 + abs F
ovolun.t T = seq 1 + abs G
ovolun.u U = seq 1 + abs H
ovolun.f1 φ F 2
ovolun.f2 φ A ran . F
ovolun.f3 φ sup ran S * < vol * A + C 2
ovolun.g1 φ G 2
ovolun.g2 φ B ran . G
ovolun.g3 φ sup ran T * < vol * B + C 2
ovolun.h H = n if n 2 G n 2 F n + 1 2
Assertion ovolunlem1a φ k U k vol * A + vol * B + C

Proof

Step Hyp Ref Expression
1 ovolun.a φ A vol * A
2 ovolun.b φ B vol * B
3 ovolun.c φ C +
4 ovolun.s S = seq 1 + abs F
5 ovolun.t T = seq 1 + abs G
6 ovolun.u U = seq 1 + abs H
7 ovolun.f1 φ F 2
8 ovolun.f2 φ A ran . F
9 ovolun.f3 φ sup ran S * < vol * A + C 2
10 ovolun.g1 φ G 2
11 ovolun.g2 φ B ran . G
12 ovolun.g3 φ sup ran T * < vol * B + C 2
13 ovolun.h H = n if n 2 G n 2 F n + 1 2
14 elovolmlem G 2 G : 2
15 10 14 sylib φ G : 2
16 15 adantr φ n G : 2
17 16 ffvelrnda φ n n 2 G n 2 2
18 nneo n n 2 ¬ n + 1 2
19 18 adantl φ n n 2 ¬ n + 1 2
20 19 con2bid φ n n + 1 2 ¬ n 2
21 20 biimpar φ n ¬ n 2 n + 1 2
22 elovolmlem F 2 F : 2
23 7 22 sylib φ F : 2
24 23 adantr φ n F : 2
25 24 ffvelrnda φ n n + 1 2 F n + 1 2 2
26 21 25 syldan φ n ¬ n 2 F n + 1 2 2
27 17 26 ifclda φ n if n 2 G n 2 F n + 1 2 2
28 27 13 fmptd φ H : 2
29 eqid abs H = abs H
30 29 6 ovolsf H : 2 U : 0 +∞
31 28 30 syl φ U : 0 +∞
32 rge0ssre 0 +∞
33 fss U : 0 +∞ 0 +∞ U :
34 31 32 33 sylancl φ U :
35 34 ffvelrnda φ k U k
36 2nn 2
37 peano2nn k k + 1
38 37 adantl φ k k + 1
39 38 nnred φ k k + 1
40 39 rehalfcld φ k k + 1 2
41 40 flcld φ k k + 1 2
42 ax-1cn 1
43 42 2timesi 2 1 = 1 + 1
44 nnge1 k 1 k
45 44 adantl φ k 1 k
46 nnre k k
47 46 adantl φ k k
48 1re 1
49 leadd1 1 k 1 1 k 1 + 1 k + 1
50 48 48 49 mp3an13 k 1 k 1 + 1 k + 1
51 47 50 syl φ k 1 k 1 + 1 k + 1
52 45 51 mpbid φ k 1 + 1 k + 1
53 43 52 eqbrtrid φ k 2 1 k + 1
54 2re 2
55 2pos 0 < 2
56 54 55 pm3.2i 2 0 < 2
57 lemuldiv2 1 k + 1 2 0 < 2 2 1 k + 1 1 k + 1 2
58 48 56 57 mp3an13 k + 1 2 1 k + 1 1 k + 1 2
59 39 58 syl φ k 2 1 k + 1 1 k + 1 2
60 53 59 mpbid φ k 1 k + 1 2
61 1z 1
62 flge k + 1 2 1 1 k + 1 2 1 k + 1 2
63 40 61 62 sylancl φ k 1 k + 1 2 1 k + 1 2
64 60 63 mpbid φ k 1 k + 1 2
65 elnnz1 k + 1 2 k + 1 2 1 k + 1 2
66 41 64 65 sylanbrc φ k k + 1 2
67 nnmulcl 2 k + 1 2 2 k + 1 2
68 36 66 67 sylancr φ k 2 k + 1 2
69 34 ffvelrnda φ 2 k + 1 2 U 2 k + 1 2
70 68 69 syldan φ k U 2 k + 1 2
71 1 simprd φ vol * A
72 2 simprd φ vol * B
73 71 72 readdcld φ vol * A + vol * B
74 3 rpred φ C
75 73 74 readdcld φ vol * A + vol * B + C
76 75 adantr φ k vol * A + vol * B + C
77 simpr φ k k
78 nnuz = 1
79 77 78 eleqtrdi φ k k 1
80 nnz k k
81 80 adantl φ k k
82 flhalf k k 2 k + 1 2
83 81 82 syl φ k k 2 k + 1 2
84 nnz 2 k + 1 2 2 k + 1 2
85 eluz k 2 k + 1 2 2 k + 1 2 k k 2 k + 1 2
86 80 84 85 syl2an k 2 k + 1 2 2 k + 1 2 k k 2 k + 1 2
87 77 68 86 syl2anc φ k 2 k + 1 2 k k 2 k + 1 2
88 83 87 mpbird φ k 2 k + 1 2 k
89 elfznn j 1 2 k + 1 2 j
90 29 ovolfsf H : 2 abs H : 0 +∞
91 28 90 syl φ abs H : 0 +∞
92 91 adantr φ k abs H : 0 +∞
93 92 ffvelrnda φ k j abs H j 0 +∞
94 elrege0 abs H j 0 +∞ abs H j 0 abs H j
95 93 94 sylib φ k j abs H j 0 abs H j
96 95 simpld φ k j abs H j
97 89 96 sylan2 φ k j 1 2 k + 1 2 abs H j
98 elfzuz j k + 1 2 k + 1 2 j k + 1
99 eluznn k + 1 j k + 1 j
100 38 98 99 syl2an φ k j k + 1 2 k + 1 2 j
101 95 simprd φ k j 0 abs H j
102 100 101 syldan φ k j k + 1 2 k + 1 2 0 abs H j
103 79 88 97 102 sermono φ k seq 1 + abs H k seq 1 + abs H 2 k + 1 2
104 6 fveq1i U k = seq 1 + abs H k
105 6 fveq1i U 2 k + 1 2 = seq 1 + abs H 2 k + 1 2
106 103 104 105 3brtr4g φ k U k U 2 k + 1 2
107 eqid abs F = abs F
108 107 4 ovolsf F : 2 S : 0 +∞
109 23 108 syl φ S : 0 +∞
110 109 frnd φ ran S 0 +∞
111 110 32 sstrdi φ ran S
112 111 adantr φ k ran S
113 109 ffnd φ S Fn
114 fnfvelrn S Fn k + 1 2 S k + 1 2 ran S
115 113 66 114 syl2an2r φ k S k + 1 2 ran S
116 112 115 sseldd φ k S k + 1 2
117 eqid abs G = abs G
118 117 5 ovolsf G : 2 T : 0 +∞
119 15 118 syl φ T : 0 +∞
120 119 frnd φ ran T 0 +∞
121 120 32 sstrdi φ ran T
122 121 adantr φ k ran T
123 119 ffnd φ T Fn
124 fnfvelrn T Fn k + 1 2 T k + 1 2 ran T
125 123 66 124 syl2an2r φ k T k + 1 2 ran T
126 122 125 sseldd φ k T k + 1 2
127 74 rehalfcld φ C 2
128 71 127 readdcld φ vol * A + C 2
129 128 adantr φ k vol * A + C 2
130 72 127 readdcld φ vol * B + C 2
131 130 adantr φ k vol * B + C 2
132 ressxr *
133 111 132 sstrdi φ ran S *
134 supxrcl ran S * sup ran S * < *
135 133 134 syl φ sup ran S * < *
136 1nn 1
137 109 fdmd φ dom S =
138 136 137 eleqtrrid φ 1 dom S
139 138 ne0d φ dom S
140 dm0rn0 dom S = ran S =
141 140 necon3bii dom S ran S
142 139 141 sylib φ ran S
143 supxrgtmnf ran S ran S −∞ < sup ran S * <
144 111 142 143 syl2anc φ −∞ < sup ran S * <
145 xrre sup ran S * < * vol * A + C 2 −∞ < sup ran S * < sup ran S * < vol * A + C 2 sup ran S * <
146 135 128 144 9 145 syl22anc φ sup ran S * <
147 146 adantr φ k sup ran S * <
148 supxrub ran S * S k + 1 2 ran S S k + 1 2 sup ran S * <
149 133 115 148 syl2an2r φ k S k + 1 2 sup ran S * <
150 9 adantr φ k sup ran S * < vol * A + C 2
151 116 147 129 149 150 letrd φ k S k + 1 2 vol * A + C 2
152 121 132 sstrdi φ ran T *
153 supxrcl ran T * sup ran T * < *
154 152 153 syl φ sup ran T * < *
155 119 fdmd φ dom T =
156 136 155 eleqtrrid φ 1 dom T
157 156 ne0d φ dom T
158 dm0rn0 dom T = ran T =
159 158 necon3bii dom T ran T
160 157 159 sylib φ ran T
161 supxrgtmnf ran T ran T −∞ < sup ran T * <
162 121 160 161 syl2anc φ −∞ < sup ran T * <
163 xrre sup ran T * < * vol * B + C 2 −∞ < sup ran T * < sup ran T * < vol * B + C 2 sup ran T * <
164 154 130 162 12 163 syl22anc φ sup ran T * <
165 164 adantr φ k sup ran T * <
166 supxrub ran T * T k + 1 2 ran T T k + 1 2 sup ran T * <
167 152 125 166 syl2an2r φ k T k + 1 2 sup ran T * <
168 12 adantr φ k sup ran T * < vol * B + C 2
169 126 165 131 167 168 letrd φ k T k + 1 2 vol * B + C 2
170 116 126 129 131 151 169 le2addd φ k S k + 1 2 + T k + 1 2 vol * A + C 2 + vol * B + C 2
171 oveq2 z = 1 2 z = 2 1
172 171 fveq2d z = 1 U 2 z = U 2 1
173 fveq2 z = 1 S z = S 1
174 fveq2 z = 1 T z = T 1
175 173 174 oveq12d z = 1 S z + T z = S 1 + T 1
176 172 175 eqeq12d z = 1 U 2 z = S z + T z U 2 1 = S 1 + T 1
177 176 imbi2d z = 1 φ U 2 z = S z + T z φ U 2 1 = S 1 + T 1
178 oveq2 z = k 2 z = 2 k
179 178 fveq2d z = k U 2 z = U 2 k
180 fveq2 z = k S z = S k
181 fveq2 z = k T z = T k
182 180 181 oveq12d z = k S z + T z = S k + T k
183 179 182 eqeq12d z = k U 2 z = S z + T z U 2 k = S k + T k
184 183 imbi2d z = k φ U 2 z = S z + T z φ U 2 k = S k + T k
185 oveq2 z = k + 1 2 z = 2 k + 1
186 185 fveq2d z = k + 1 U 2 z = U 2 k + 1
187 fveq2 z = k + 1 S z = S k + 1
188 fveq2 z = k + 1 T z = T k + 1
189 187 188 oveq12d z = k + 1 S z + T z = S k + 1 + T k + 1
190 186 189 eqeq12d z = k + 1 U 2 z = S z + T z U 2 k + 1 = S k + 1 + T k + 1
191 190 imbi2d z = k + 1 φ U 2 z = S z + T z φ U 2 k + 1 = S k + 1 + T k + 1
192 oveq2 z = k + 1 2 2 z = 2 k + 1 2
193 192 fveq2d z = k + 1 2 U 2 z = U 2 k + 1 2
194 fveq2 z = k + 1 2 S z = S k + 1 2
195 fveq2 z = k + 1 2 T z = T k + 1 2
196 194 195 oveq12d z = k + 1 2 S z + T z = S k + 1 2 + T k + 1 2
197 193 196 eqeq12d z = k + 1 2 U 2 z = S z + T z U 2 k + 1 2 = S k + 1 2 + T k + 1 2
198 197 imbi2d z = k + 1 2 φ U 2 z = S z + T z φ U 2 k + 1 2 = S k + 1 2 + T k + 1 2
199 6 fveq1i U 2 1 = seq 1 + abs H 2 1
200 136 a1i φ 1
201 29 ovolfsval H : 2 1 abs H 1 = 2 nd H 1 1 st H 1
202 28 136 201 sylancl φ abs H 1 = 2 nd H 1 1 st H 1
203 halfnz ¬ 1 2
204 nnz n 2 n 2
205 oveq1 n = 1 n 2 = 1 2
206 205 eleq1d n = 1 n 2 1 2
207 204 206 syl5ib n = 1 n 2 1 2
208 203 207 mtoi n = 1 ¬ n 2
209 208 iffalsed n = 1 if n 2 G n 2 F n + 1 2 = F n + 1 2
210 oveq1 n = 1 n + 1 = 1 + 1
211 df-2 2 = 1 + 1
212 210 211 eqtr4di n = 1 n + 1 = 2
213 212 oveq1d n = 1 n + 1 2 = 2 2
214 2div2e1 2 2 = 1
215 213 214 eqtrdi n = 1 n + 1 2 = 1
216 215 fveq2d n = 1 F n + 1 2 = F 1
217 209 216 eqtrd n = 1 if n 2 G n 2 F n + 1 2 = F 1
218 fvex F 1 V
219 217 13 218 fvmpt 1 H 1 = F 1
220 136 219 ax-mp H 1 = F 1
221 220 fveq2i 2 nd H 1 = 2 nd F 1
222 220 fveq2i 1 st H 1 = 1 st F 1
223 221 222 oveq12i 2 nd H 1 1 st H 1 = 2 nd F 1 1 st F 1
224 202 223 eqtrdi φ abs H 1 = 2 nd F 1 1 st F 1
225 61 224 seq1i φ seq 1 + abs H 1 = 2 nd F 1 1 st F 1
226 2t1e2 2 1 = 2
227 226 fveq2i abs H 2 1 = abs H 2
228 29 ovolfsval H : 2 2 abs H 2 = 2 nd H 2 1 st H 2
229 28 36 228 sylancl φ abs H 2 = 2 nd H 2 1 st H 2
230 oveq1 n = 2 n 2 = 2 2
231 230 214 eqtrdi n = 2 n 2 = 1
232 231 136 eqeltrdi n = 2 n 2
233 232 iftrued n = 2 if n 2 G n 2 F n + 1 2 = G n 2
234 231 fveq2d n = 2 G n 2 = G 1
235 233 234 eqtrd n = 2 if n 2 G n 2 F n + 1 2 = G 1
236 fvex G 1 V
237 235 13 236 fvmpt 2 H 2 = G 1
238 36 237 ax-mp H 2 = G 1
239 238 fveq2i 2 nd H 2 = 2 nd G 1
240 238 fveq2i 1 st H 2 = 1 st G 1
241 239 240 oveq12i 2 nd H 2 1 st H 2 = 2 nd G 1 1 st G 1
242 229 241 eqtrdi φ abs H 2 = 2 nd G 1 1 st G 1
243 227 242 eqtrid φ abs H 2 1 = 2 nd G 1 1 st G 1
244 78 200 43 225 243 seqp1d φ seq 1 + abs H 2 1 = 2 nd F 1 1 st F 1 + 2 nd G 1 - 1 st G 1
245 199 244 eqtrid φ U 2 1 = 2 nd F 1 1 st F 1 + 2 nd G 1 - 1 st G 1
246 4 fveq1i S 1 = seq 1 + abs F 1
247 107 ovolfsval F : 2 1 abs F 1 = 2 nd F 1 1 st F 1
248 23 136 247 sylancl φ abs F 1 = 2 nd F 1 1 st F 1
249 61 248 seq1i φ seq 1 + abs F 1 = 2 nd F 1 1 st F 1
250 246 249 eqtrid φ S 1 = 2 nd F 1 1 st F 1
251 5 fveq1i T 1 = seq 1 + abs G 1
252 117 ovolfsval G : 2 1 abs G 1 = 2 nd G 1 1 st G 1
253 15 136 252 sylancl φ abs G 1 = 2 nd G 1 1 st G 1
254 61 253 seq1i φ seq 1 + abs G 1 = 2 nd G 1 1 st G 1
255 251 254 eqtrid φ T 1 = 2 nd G 1 1 st G 1
256 250 255 oveq12d φ S 1 + T 1 = 2 nd F 1 1 st F 1 + 2 nd G 1 - 1 st G 1
257 245 256 eqtr4d φ U 2 1 = S 1 + T 1
258 oveq1 U 2 k = S k + T k U 2 k + abs F k + 1 + abs G k + 1 = S k + T k + abs F k + 1 + abs G k + 1
259 43 oveq2i 2 k + 2 1 = 2 k + 1 + 1
260 2cnd φ k 2
261 47 recnd φ k k
262 1cnd φ k 1
263 260 261 262 adddid φ k 2 k + 1 = 2 k + 2 1
264 nnmulcl 2 k 2 k
265 36 264 mpan k 2 k
266 265 adantl φ k 2 k
267 266 nncnd φ k 2 k
268 267 262 262 addassd φ k 2 k + 1 + 1 = 2 k + 1 + 1
269 259 263 268 3eqtr4a φ k 2 k + 1 = 2 k + 1 + 1
270 269 fveq2d φ k U 2 k + 1 = U 2 k + 1 + 1
271 6 fveq1i U 2 k + 1 + 1 = seq 1 + abs H 2 k + 1 + 1
272 266 peano2nnd φ k 2 k + 1
273 272 78 eleqtrdi φ k 2 k + 1 1
274 seqp1 2 k + 1 1 seq 1 + abs H 2 k + 1 + 1 = seq 1 + abs H 2 k + 1 + abs H 2 k + 1 + 1
275 273 274 syl φ k seq 1 + abs H 2 k + 1 + 1 = seq 1 + abs H 2 k + 1 + abs H 2 k + 1 + 1
276 266 78 eleqtrdi φ k 2 k 1
277 seqp1 2 k 1 seq 1 + abs H 2 k + 1 = seq 1 + abs H 2 k + abs H 2 k + 1
278 276 277 syl φ k seq 1 + abs H 2 k + 1 = seq 1 + abs H 2 k + abs H 2 k + 1
279 6 fveq1i U 2 k = seq 1 + abs H 2 k
280 279 a1i φ k U 2 k = seq 1 + abs H 2 k
281 oveq1 n = 2 k + 1 n 2 = 2 k + 1 2
282 281 eleq1d n = 2 k + 1 n 2 2 k + 1 2
283 281 fveq2d n = 2 k + 1 G n 2 = G 2 k + 1 2
284 oveq1 n = 2 k + 1 n + 1 = 2 k + 1 + 1
285 284 fvoveq1d n = 2 k + 1 F n + 1 2 = F 2 k + 1 + 1 2
286 282 283 285 ifbieq12d n = 2 k + 1 if n 2 G n 2 F n + 1 2 = if 2 k + 1 2 G 2 k + 1 2 F 2 k + 1 + 1 2
287 fvex G 2 k + 1 2 V
288 fvex F 2 k + 1 + 1 2 V
289 287 288 ifex if 2 k + 1 2 G 2 k + 1 2 F 2 k + 1 + 1 2 V
290 286 13 289 fvmpt 2 k + 1 H 2 k + 1 = if 2 k + 1 2 G 2 k + 1 2 F 2 k + 1 + 1 2
291 272 290 syl φ k H 2 k + 1 = if 2 k + 1 2 G 2 k + 1 2 F 2 k + 1 + 1 2
292 2ne0 2 0
293 292 a1i φ k 2 0
294 261 260 293 divcan3d φ k 2 k 2 = k
295 294 77 eqeltrd φ k 2 k 2
296 nneo 2 k 2 k 2 ¬ 2 k + 1 2
297 266 296 syl φ k 2 k 2 ¬ 2 k + 1 2
298 295 297 mpbid φ k ¬ 2 k + 1 2
299 298 iffalsed φ k if 2 k + 1 2 G 2 k + 1 2 F 2 k + 1 + 1 2 = F 2 k + 1 + 1 2
300 269 oveq1d φ k 2 k + 1 2 = 2 k + 1 + 1 2
301 38 nncnd φ k k + 1
302 2cn 2
303 divcan3 k + 1 2 2 0 2 k + 1 2 = k + 1
304 302 292 303 mp3an23 k + 1 2 k + 1 2 = k + 1
305 301 304 syl φ k 2 k + 1 2 = k + 1
306 300 305 eqtr3d φ k 2 k + 1 + 1 2 = k + 1
307 306 fveq2d φ k F 2 k + 1 + 1 2 = F k + 1
308 291 299 307 3eqtrd φ k H 2 k + 1 = F k + 1
309 308 fveq2d φ k 2 nd H 2 k + 1 = 2 nd F k + 1
310 308 fveq2d φ k 1 st H 2 k + 1 = 1 st F k + 1
311 309 310 oveq12d φ k 2 nd H 2 k + 1 1 st H 2 k + 1 = 2 nd F k + 1 1 st F k + 1
312 29 ovolfsval H : 2 2 k + 1 abs H 2 k + 1 = 2 nd H 2 k + 1 1 st H 2 k + 1
313 28 272 312 syl2an2r φ k abs H 2 k + 1 = 2 nd H 2 k + 1 1 st H 2 k + 1
314 107 ovolfsval F : 2 k + 1 abs F k + 1 = 2 nd F k + 1 1 st F k + 1
315 23 37 314 syl2an φ k abs F k + 1 = 2 nd F k + 1 1 st F k + 1
316 311 313 315 3eqtr4rd φ k abs F k + 1 = abs H 2 k + 1
317 280 316 oveq12d φ k U 2 k + abs F k + 1 = seq 1 + abs H 2 k + abs H 2 k + 1
318 278 317 eqtr4d φ k seq 1 + abs H 2 k + 1 = U 2 k + abs F k + 1
319 269 fveq2d φ k H 2 k + 1 = H 2 k + 1 + 1
320 272 peano2nnd φ k 2 k + 1 + 1
321 269 320 eqeltrd φ k 2 k + 1
322 oveq1 n = 2 k + 1 n 2 = 2 k + 1 2
323 322 eleq1d n = 2 k + 1 n 2 2 k + 1 2
324 322 fveq2d n = 2 k + 1 G n 2 = G 2 k + 1 2
325 oveq1 n = 2 k + 1 n + 1 = 2 k + 1 + 1
326 325 fvoveq1d n = 2 k + 1 F n + 1 2 = F 2 k + 1 + 1 2
327 323 324 326 ifbieq12d n = 2 k + 1 if n 2 G n 2 F n + 1 2 = if 2 k + 1 2 G 2 k + 1 2 F 2 k + 1 + 1 2
328 fvex G 2 k + 1 2 V
329 fvex F 2 k + 1 + 1 2 V
330 328 329 ifex if 2 k + 1 2 G 2 k + 1 2 F 2 k + 1 + 1 2 V
331 327 13 330 fvmpt 2 k + 1 H 2 k + 1 = if 2 k + 1 2 G 2 k + 1 2 F 2 k + 1 + 1 2
332 321 331 syl φ k H 2 k + 1 = if 2 k + 1 2 G 2 k + 1 2 F 2 k + 1 + 1 2
333 305 38 eqeltrd φ k 2 k + 1 2
334 333 iftrued φ k if 2 k + 1 2 G 2 k + 1 2 F 2 k + 1 + 1 2 = G 2 k + 1 2
335 305 fveq2d φ k G 2 k + 1 2 = G k + 1
336 332 334 335 3eqtrd φ k H 2 k + 1 = G k + 1
337 319 336 eqtr3d φ k H 2 k + 1 + 1 = G k + 1
338 337 fveq2d φ k 2 nd H 2 k + 1 + 1 = 2 nd G k + 1
339 337 fveq2d φ k 1 st H 2 k + 1 + 1 = 1 st G k + 1
340 338 339 oveq12d φ k 2 nd H 2 k + 1 + 1 1 st H 2 k + 1 + 1 = 2 nd G k + 1 1 st G k + 1
341 29 ovolfsval H : 2 2 k + 1 + 1 abs H 2 k + 1 + 1 = 2 nd H 2 k + 1 + 1 1 st H 2 k + 1 + 1
342 28 320 341 syl2an2r φ k abs H 2 k + 1 + 1 = 2 nd H 2 k + 1 + 1 1 st H 2 k + 1 + 1
343 117 ovolfsval G : 2 k + 1 abs G k + 1 = 2 nd G k + 1 1 st G k + 1
344 15 37 343 syl2an φ k abs G k + 1 = 2 nd G k + 1 1 st G k + 1
345 340 342 344 3eqtr4d φ k abs H 2 k + 1 + 1 = abs G k + 1
346 318 345 oveq12d φ k seq 1 + abs H 2 k + 1 + abs H 2 k + 1 + 1 = U 2 k + abs F k + 1 + abs G k + 1
347 275 346 eqtrd φ k seq 1 + abs H 2 k + 1 + 1 = U 2 k + abs F k + 1 + abs G k + 1
348 271 347 eqtrid φ k U 2 k + 1 + 1 = U 2 k + abs F k + 1 + abs G k + 1
349 ffvelrn U : 0 +∞ 2 k U 2 k 0 +∞
350 31 265 349 syl2an φ k U 2 k 0 +∞
351 32 350 sselid φ k U 2 k
352 351 recnd φ k U 2 k
353 107 ovolfsf F : 2 abs F : 0 +∞
354 23 353 syl φ abs F : 0 +∞
355 ffvelrn abs F : 0 +∞ k + 1 abs F k + 1 0 +∞
356 354 37 355 syl2an φ k abs F k + 1 0 +∞
357 32 356 sselid φ k abs F k + 1
358 357 recnd φ k abs F k + 1
359 117 ovolfsf G : 2 abs G : 0 +∞
360 15 359 syl φ abs G : 0 +∞
361 ffvelrn abs G : 0 +∞ k + 1 abs G k + 1 0 +∞
362 360 37 361 syl2an φ k abs G k + 1 0 +∞
363 32 362 sselid φ k abs G k + 1
364 363 recnd φ k abs G k + 1
365 352 358 364 addassd φ k U 2 k + abs F k + 1 + abs G k + 1 = U 2 k + abs F k + 1 + abs G k + 1
366 270 348 365 3eqtrd φ k U 2 k + 1 = U 2 k + abs F k + 1 + abs G k + 1
367 seqp1 k 1 seq 1 + abs F k + 1 = seq 1 + abs F k + abs F k + 1
368 79 367 syl φ k seq 1 + abs F k + 1 = seq 1 + abs F k + abs F k + 1
369 4 fveq1i S k + 1 = seq 1 + abs F k + 1
370 4 fveq1i S k = seq 1 + abs F k
371 370 oveq1i S k + abs F k + 1 = seq 1 + abs F k + abs F k + 1
372 368 369 371 3eqtr4g φ k S k + 1 = S k + abs F k + 1
373 seqp1 k 1 seq 1 + abs G k + 1 = seq 1 + abs G k + abs G k + 1
374 79 373 syl φ k seq 1 + abs G k + 1 = seq 1 + abs G k + abs G k + 1
375 5 fveq1i T k + 1 = seq 1 + abs G k + 1
376 5 fveq1i T k = seq 1 + abs G k
377 376 oveq1i T k + abs G k + 1 = seq 1 + abs G k + abs G k + 1
378 374 375 377 3eqtr4g φ k T k + 1 = T k + abs G k + 1
379 372 378 oveq12d φ k S k + 1 + T k + 1 = S k + abs F k + 1 + T k + abs G k + 1
380 109 ffvelrnda φ k S k 0 +∞
381 32 380 sselid φ k S k
382 381 recnd φ k S k
383 119 ffvelrnda φ k T k 0 +∞
384 32 383 sselid φ k T k
385 384 recnd φ k T k
386 382 358 385 364 add4d φ k S k + abs F k + 1 + T k + abs G k + 1 = S k + T k + abs F k + 1 + abs G k + 1
387 379 386 eqtrd φ k S k + 1 + T k + 1 = S k + T k + abs F k + 1 + abs G k + 1
388 366 387 eqeq12d φ k U 2 k + 1 = S k + 1 + T k + 1 U 2 k + abs F k + 1 + abs G k + 1 = S k + T k + abs F k + 1 + abs G k + 1
389 258 388 syl5ibr φ k U 2 k = S k + T k U 2 k + 1 = S k + 1 + T k + 1
390 389 expcom k φ U 2 k = S k + T k U 2 k + 1 = S k + 1 + T k + 1
391 390 a2d k φ U 2 k = S k + T k φ U 2 k + 1 = S k + 1 + T k + 1
392 177 184 191 198 257 391 nnind k + 1 2 φ U 2 k + 1 2 = S k + 1 2 + T k + 1 2
393 392 impcom φ k + 1 2 U 2 k + 1 2 = S k + 1 2 + T k + 1 2
394 66 393 syldan φ k U 2 k + 1 2 = S k + 1 2 + T k + 1 2
395 71 adantr φ k vol * A
396 395 recnd φ k vol * A
397 74 adantr φ k C
398 397 rehalfcld φ k C 2
399 398 recnd φ k C 2
400 72 adantr φ k vol * B
401 400 recnd φ k vol * B
402 396 399 401 399 add4d φ k vol * A + C 2 + vol * B + C 2 = vol * A + vol * B + C 2 + C 2
403 397 recnd φ k C
404 403 2halvesd φ k C 2 + C 2 = C
405 404 oveq2d φ k vol * A + vol * B + C 2 + C 2 = vol * A + vol * B + C
406 402 405 eqtr2d φ k vol * A + vol * B + C = vol * A + C 2 + vol * B + C 2
407 170 394 406 3brtr4d φ k U 2 k + 1 2 vol * A + vol * B + C
408 35 70 76 106 407 letrd φ k U k vol * A + vol * B + C