Metamath Proof Explorer


Theorem ovolunlem2

Description: Lemma for ovolun . (Contributed by Mario Carneiro, 12-Jun-2014)

Ref Expression
Hypotheses ovolun.a φ A vol * A
ovolun.b φ B vol * B
ovolun.c φ C +
Assertion ovolunlem2 φ vol * A B vol * A + vol * B + C

Proof

Step Hyp Ref Expression
1 ovolun.a φ A vol * A
2 ovolun.b φ B vol * B
3 ovolun.c φ C +
4 1 simpld φ A
5 1 simprd φ vol * A
6 3 rphalfcld φ C 2 +
7 eqid seq 1 + abs g = seq 1 + abs g
8 7 ovolgelb A vol * A C 2 + g 2 A ran . g sup ran seq 1 + abs g * < vol * A + C 2
9 4 5 6 8 syl3anc φ g 2 A ran . g sup ran seq 1 + abs g * < vol * A + C 2
10 2 simpld φ B
11 2 simprd φ vol * B
12 eqid seq 1 + abs h = seq 1 + abs h
13 12 ovolgelb B vol * B C 2 + h 2 B ran . h sup ran seq 1 + abs h * < vol * B + C 2
14 10 11 6 13 syl3anc φ h 2 B ran . h sup ran seq 1 + abs h * < vol * B + C 2
15 reeanv g 2 h 2 A ran . g sup ran seq 1 + abs g * < vol * A + C 2 B ran . h sup ran seq 1 + abs h * < vol * B + C 2 g 2 A ran . g sup ran seq 1 + abs g * < vol * A + C 2 h 2 B ran . h sup ran seq 1 + abs h * < vol * B + C 2
16 1 3ad2ant1 φ g 2 h 2 A ran . g sup ran seq 1 + abs g * < vol * A + C 2 B ran . h sup ran seq 1 + abs h * < vol * B + C 2 A vol * A
17 2 3ad2ant1 φ g 2 h 2 A ran . g sup ran seq 1 + abs g * < vol * A + C 2 B ran . h sup ran seq 1 + abs h * < vol * B + C 2 B vol * B
18 3 3ad2ant1 φ g 2 h 2 A ran . g sup ran seq 1 + abs g * < vol * A + C 2 B ran . h sup ran seq 1 + abs h * < vol * B + C 2 C +
19 eqid seq 1 + abs n if n 2 h n 2 g n + 1 2 = seq 1 + abs n if n 2 h n 2 g n + 1 2
20 simp2l φ g 2 h 2 A ran . g sup ran seq 1 + abs g * < vol * A + C 2 B ran . h sup ran seq 1 + abs h * < vol * B + C 2 g 2
21 simp3ll φ g 2 h 2 A ran . g sup ran seq 1 + abs g * < vol * A + C 2 B ran . h sup ran seq 1 + abs h * < vol * B + C 2 A ran . g
22 simp3lr φ g 2 h 2 A ran . g sup ran seq 1 + abs g * < vol * A + C 2 B ran . h sup ran seq 1 + abs h * < vol * B + C 2 sup ran seq 1 + abs g * < vol * A + C 2
23 simp2r φ g 2 h 2 A ran . g sup ran seq 1 + abs g * < vol * A + C 2 B ran . h sup ran seq 1 + abs h * < vol * B + C 2 h 2
24 simp3rl φ g 2 h 2 A ran . g sup ran seq 1 + abs g * < vol * A + C 2 B ran . h sup ran seq 1 + abs h * < vol * B + C 2 B ran . h
25 simp3rr φ g 2 h 2 A ran . g sup ran seq 1 + abs g * < vol * A + C 2 B ran . h sup ran seq 1 + abs h * < vol * B + C 2 sup ran seq 1 + abs h * < vol * B + C 2
26 eqid n if n 2 h n 2 g n + 1 2 = n if n 2 h n 2 g n + 1 2
27 16 17 18 7 12 19 20 21 22 23 24 25 26 ovolunlem1 φ g 2 h 2 A ran . g sup ran seq 1 + abs g * < vol * A + C 2 B ran . h sup ran seq 1 + abs h * < vol * B + C 2 vol * A B vol * A + vol * B + C
28 27 3exp φ g 2 h 2 A ran . g sup ran seq 1 + abs g * < vol * A + C 2 B ran . h sup ran seq 1 + abs h * < vol * B + C 2 vol * A B vol * A + vol * B + C
29 28 rexlimdvv φ g 2 h 2 A ran . g sup ran seq 1 + abs g * < vol * A + C 2 B ran . h sup ran seq 1 + abs h * < vol * B + C 2 vol * A B vol * A + vol * B + C
30 15 29 syl5bir φ g 2 A ran . g sup ran seq 1 + abs g * < vol * A + C 2 h 2 B ran . h sup ran seq 1 + abs h * < vol * B + C 2 vol * A B vol * A + vol * B + C
31 9 14 30 mp2and φ vol * A B vol * A + vol * B + C