Metamath Proof Explorer


Theorem ovolval

Description: The value of the outer measure. (Contributed by Mario Carneiro, 16-Mar-2014) (Revised by AV, 17-Sep-2020)

Ref Expression
Hypothesis ovolval.1 M = y * | f 2 A ran . f y = sup ran seq 1 + abs f * <
Assertion ovolval A vol * A = sup M * <

Proof

Step Hyp Ref Expression
1 ovolval.1 M = y * | f 2 A ran . f y = sup ran seq 1 + abs f * <
2 reex V
3 2 elpw2 A 𝒫 A
4 cleq1lem x = A x ran . f y = sup ran seq 1 + abs f * < A ran . f y = sup ran seq 1 + abs f * <
5 4 rexbidv x = A f 2 x ran . f y = sup ran seq 1 + abs f * < f 2 A ran . f y = sup ran seq 1 + abs f * <
6 5 rabbidv x = A y * | f 2 x ran . f y = sup ran seq 1 + abs f * < = y * | f 2 A ran . f y = sup ran seq 1 + abs f * <
7 6 1 eqtr4di x = A y * | f 2 x ran . f y = sup ran seq 1 + abs f * < = M
8 7 infeq1d x = A sup y * | f 2 x ran . f y = sup ran seq 1 + abs f * < * < = sup M * <
9 df-ovol vol * = x 𝒫 sup y * | f 2 x ran . f y = sup ran seq 1 + abs f * < * <
10 xrltso < Or *
11 10 infex sup M * < V
12 8 9 11 fvmpt A 𝒫 vol * A = sup M * <
13 3 12 sylbir A vol * A = sup M * <