Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Operations
ovrcl
Next ⟩
csbov123
Metamath Proof Explorer
Ascii
Unicode
Theorem
ovrcl
Description:
Reverse closure for an operation value.
(Contributed by
Mario Carneiro
, 5-May-2015)
Ref
Expression
Hypothesis
ovprc1.1
⊢
Rel
⁡
dom
⁡
F
Assertion
ovrcl
⊢
C
∈
A
F
B
→
A
∈
V
∧
B
∈
V
Proof
Step
Hyp
Ref
Expression
1
ovprc1.1
⊢
Rel
⁡
dom
⁡
F
2
n0i
⊢
C
∈
A
F
B
→
¬
A
F
B
=
∅
3
1
ovprc
⊢
¬
A
∈
V
∧
B
∈
V
→
A
F
B
=
∅
4
2
3
nsyl2
⊢
C
∈
A
F
B
→
A
∈
V
∧
B
∈
V