Metamath Proof Explorer


Theorem ovrcl

Description: Reverse closure for an operation value. (Contributed by Mario Carneiro, 5-May-2015)

Ref Expression
Hypothesis ovprc1.1 Rel dom F
Assertion ovrcl C A F B A V B V

Proof

Step Hyp Ref Expression
1 ovprc1.1 Rel dom F
2 n0i C A F B ¬ A F B =
3 1 ovprc ¬ A V B V A F B =
4 2 3 nsyl2 C A F B A V B V