Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Operations
ovres
Next ⟩
ovresd
Metamath Proof Explorer
Ascii
Unicode
Theorem
ovres
Description:
The value of a restricted operation.
(Contributed by
FL
, 10-Nov-2006)
Ref
Expression
Assertion
ovres
⊢
A
∈
C
∧
B
∈
D
→
A
F
↾
C
×
D
B
=
A
F
B
Proof
Step
Hyp
Ref
Expression
1
opelxpi
⊢
A
∈
C
∧
B
∈
D
→
A
B
∈
C
×
D
2
1
fvresd
⊢
A
∈
C
∧
B
∈
D
→
F
↾
C
×
D
⁡
A
B
=
F
⁡
A
B
3
df-ov
⊢
A
F
↾
C
×
D
B
=
F
↾
C
×
D
⁡
A
B
4
df-ov
⊢
A
F
B
=
F
⁡
A
B
5
2
3
4
3eqtr4g
⊢
A
∈
C
∧
B
∈
D
→
A
F
↾
C
×
D
B
=
A
F
B