Metamath Proof Explorer


Theorem ovrspc2v

Description: If an operation value is element of a class for all operands of two classes, then the operation value is an element of the class for specific operands of the two classes. (Contributed by Mario Carneiro, 6-Dec-2014)

Ref Expression
Assertion ovrspc2v X A Y B x A y B x F y C X F Y C

Proof

Step Hyp Ref Expression
1 oveq1 x = X x F y = X F y
2 1 eleq1d x = X x F y C X F y C
3 oveq2 y = Y X F y = X F Y
4 3 eleq1d y = Y X F y C X F Y C
5 2 4 rspc2va X A Y B x A y B x F y C X F Y C