Metamath Proof Explorer


Theorem p0le

Description: Any element is less than or equal to a poset's upper bound (if defined). (Contributed by NM, 22-Oct-2011) (Revised by NM, 13-Sep-2018)

Ref Expression
Hypotheses p0le.b B = Base K
p0le.g G = glb K
p0le.l ˙ = K
p0le.0 0 ˙ = 0. K
p0le.k φ K V
p0le.x φ X B
p0le.d φ B dom G
Assertion p0le φ 0 ˙ ˙ X

Proof

Step Hyp Ref Expression
1 p0le.b B = Base K
2 p0le.g G = glb K
3 p0le.l ˙ = K
4 p0le.0 0 ˙ = 0. K
5 p0le.k φ K V
6 p0le.x φ X B
7 p0le.d φ B dom G
8 1 2 4 p0val K V 0 ˙ = G B
9 5 8 syl φ 0 ˙ = G B
10 1 3 2 5 7 6 glble φ G B ˙ X
11 9 10 eqbrtrd φ 0 ˙ ˙ X