Metamath Proof Explorer


Theorem p0val

Description: Value of poset zero. (Contributed by NM, 12-Oct-2011)

Ref Expression
Hypotheses p0val.b B = Base K
p0val.g G = glb K
p0val.z 0 ˙ = 0. K
Assertion p0val K V 0 ˙ = G B

Proof

Step Hyp Ref Expression
1 p0val.b B = Base K
2 p0val.g G = glb K
3 p0val.z 0 ˙ = 0. K
4 elex K V K V
5 fveq2 p = K glb p = glb K
6 5 2 eqtr4di p = K glb p = G
7 fveq2 p = K Base p = Base K
8 7 1 eqtr4di p = K Base p = B
9 6 8 fveq12d p = K glb p Base p = G B
10 df-p0 0. = p V glb p Base p
11 fvex G B V
12 9 10 11 fvmpt K V 0. K = G B
13 3 12 eqtrid K V 0 ˙ = G B
14 4 13 syl K V 0 ˙ = G B