Database
BASIC ORDER THEORY
Totally ordered sets (tosets)
p0val
Next ⟩
p1val
Metamath Proof Explorer
Ascii
Unicode
Theorem
p0val
Description:
Value of poset zero.
(Contributed by
NM
, 12-Oct-2011)
Ref
Expression
Hypotheses
p0val.b
⊢
B
=
Base
K
p0val.g
⊢
G
=
glb
⁡
K
p0val.z
⊢
0
˙
=
0.
⁡
K
Assertion
p0val
⊢
K
∈
V
→
0
˙
=
G
⁡
B
Proof
Step
Hyp
Ref
Expression
1
p0val.b
⊢
B
=
Base
K
2
p0val.g
⊢
G
=
glb
⁡
K
3
p0val.z
⊢
0
˙
=
0.
⁡
K
4
elex
⊢
K
∈
V
→
K
∈
V
5
fveq2
⊢
p
=
K
→
glb
⁡
p
=
glb
⁡
K
6
5
2
eqtr4di
⊢
p
=
K
→
glb
⁡
p
=
G
7
fveq2
⊢
p
=
K
→
Base
p
=
Base
K
8
7
1
eqtr4di
⊢
p
=
K
→
Base
p
=
B
9
6
8
fveq12d
⊢
p
=
K
→
glb
⁡
p
⁡
Base
p
=
G
⁡
B
10
df-p0
⊢
0.
=
p
∈
V
⟼
glb
⁡
p
⁡
Base
p
11
fvex
⊢
G
⁡
B
∈
V
12
9
10
11
fvmpt
⊢
K
∈
V
→
0.
⁡
K
=
G
⁡
B
13
3
12
eqtrid
⊢
K
∈
V
→
0
˙
=
G
⁡
B
14
4
13
syl
⊢
K
∈
V
→
0
˙
=
G
⁡
B