Metamath Proof Explorer


Theorem p1evtxdeq

Description: If an edge E which does not contain vertex U is added to a graph G (yielding a graph F ), the degree of U is the same in both graphs. (Contributed by AV, 2-Mar-2021)

Ref Expression
Hypotheses p1evtxdeq.v V = Vtx G
p1evtxdeq.i I = iEdg G
p1evtxdeq.f φ Fun I
p1evtxdeq.fv φ Vtx F = V
p1evtxdeq.fi φ iEdg F = I K E
p1evtxdeq.k φ K X
p1evtxdeq.d φ K dom I
p1evtxdeq.u φ U V
p1evtxdeq.e φ E Y
p1evtxdeq.n φ U E
Assertion p1evtxdeq φ VtxDeg F U = VtxDeg G U

Proof

Step Hyp Ref Expression
1 p1evtxdeq.v V = Vtx G
2 p1evtxdeq.i I = iEdg G
3 p1evtxdeq.f φ Fun I
4 p1evtxdeq.fv φ Vtx F = V
5 p1evtxdeq.fi φ iEdg F = I K E
6 p1evtxdeq.k φ K X
7 p1evtxdeq.d φ K dom I
8 p1evtxdeq.u φ U V
9 p1evtxdeq.e φ E Y
10 p1evtxdeq.n φ U E
11 1 2 3 4 5 6 7 8 9 p1evtxdeqlem φ VtxDeg F U = VtxDeg G U + 𝑒 VtxDeg V K E U
12 1 fvexi V V
13 snex K E V
14 12 13 pm3.2i V V K E V
15 opiedgfv V V K E V iEdg V K E = K E
16 14 15 mp1i φ iEdg V K E = K E
17 opvtxfv V V K E V Vtx V K E = V
18 14 17 mp1i φ Vtx V K E = V
19 16 18 6 8 9 10 1hevtxdg0 φ VtxDeg V K E U = 0
20 19 oveq2d φ VtxDeg G U + 𝑒 VtxDeg V K E U = VtxDeg G U + 𝑒 0
21 1 vtxdgelxnn0 U V VtxDeg G U 0 *
22 xnn0xr VtxDeg G U 0 * VtxDeg G U *
23 8 21 22 3syl φ VtxDeg G U *
24 23 xaddid1d φ VtxDeg G U + 𝑒 0 = VtxDeg G U
25 11 20 24 3eqtrd φ VtxDeg F U = VtxDeg G U