Metamath Proof Explorer


Theorem p1evtxdp1

Description: If an edge E (not being a loop) which contains vertex U is added to a graph G (yielding a graph F ), the degree of U is increased by 1. (Contributed by AV, 3-Mar-2021)

Ref Expression
Hypotheses p1evtxdeq.v V = Vtx G
p1evtxdeq.i I = iEdg G
p1evtxdeq.f φ Fun I
p1evtxdeq.fv φ Vtx F = V
p1evtxdeq.fi φ iEdg F = I K E
p1evtxdeq.k φ K X
p1evtxdeq.d φ K dom I
p1evtxdeq.u φ U V
p1evtxdp1.e φ E 𝒫 V
p1evtxdp1.n φ U E
p1evtxdp1.l φ 2 E
Assertion p1evtxdp1 φ VtxDeg F U = VtxDeg G U + 𝑒 1

Proof

Step Hyp Ref Expression
1 p1evtxdeq.v V = Vtx G
2 p1evtxdeq.i I = iEdg G
3 p1evtxdeq.f φ Fun I
4 p1evtxdeq.fv φ Vtx F = V
5 p1evtxdeq.fi φ iEdg F = I K E
6 p1evtxdeq.k φ K X
7 p1evtxdeq.d φ K dom I
8 p1evtxdeq.u φ U V
9 p1evtxdp1.e φ E 𝒫 V
10 p1evtxdp1.n φ U E
11 p1evtxdp1.l φ 2 E
12 1 2 3 4 5 6 7 8 9 p1evtxdeqlem φ VtxDeg F U = VtxDeg G U + 𝑒 VtxDeg V K E U
13 1 fvexi V V
14 snex K E V
15 13 14 pm3.2i V V K E V
16 opiedgfv V V K E V iEdg V K E = K E
17 15 16 mp1i φ iEdg V K E = K E
18 opvtxfv V V K E V Vtx V K E = V
19 15 18 mp1i φ Vtx V K E = V
20 17 19 6 8 9 10 11 1hevtxdg1 φ VtxDeg V K E U = 1
21 20 oveq2d φ VtxDeg G U + 𝑒 VtxDeg V K E U = VtxDeg G U + 𝑒 1
22 12 21 eqtrd φ VtxDeg F U = VtxDeg G U + 𝑒 1