Metamath Proof Explorer


Theorem p1le

Description: A transitive property of plus 1 and 'less than or equal'. (Contributed by NM, 16-Aug-2005)

Ref Expression
Assertion p1le A B A + 1 B A B

Proof

Step Hyp Ref Expression
1 lep1 A A A + 1
2 1 adantr A B A A + 1
3 peano2re A A + 1
4 3 ancli A A A + 1
5 letr A A + 1 B A A + 1 A + 1 B A B
6 5 3expa A A + 1 B A A + 1 A + 1 B A B
7 4 6 sylan A B A A + 1 A + 1 B A B
8 2 7 mpand A B A + 1 B A B
9 8 3impia A B A + 1 B A B