Database
BASIC ORDER THEORY
Totally ordered sets (tosets)
p1val
Next ⟩
p0le
Metamath Proof Explorer
Ascii
Unicode
Theorem
p1val
Description:
Value of poset zero.
(Contributed by
NM
, 22-Oct-2011)
Ref
Expression
Hypotheses
p1val.b
⊢
B
=
Base
K
p1val.u
⊢
U
=
lub
⁡
K
p1val.t
⊢
1
˙
=
1.
⁡
K
Assertion
p1val
⊢
K
∈
V
→
1
˙
=
U
⁡
B
Proof
Step
Hyp
Ref
Expression
1
p1val.b
⊢
B
=
Base
K
2
p1val.u
⊢
U
=
lub
⁡
K
3
p1val.t
⊢
1
˙
=
1.
⁡
K
4
elex
⊢
K
∈
V
→
K
∈
V
5
fveq2
⊢
k
=
K
→
lub
⁡
k
=
lub
⁡
K
6
5
2
eqtr4di
⊢
k
=
K
→
lub
⁡
k
=
U
7
fveq2
⊢
k
=
K
→
Base
k
=
Base
K
8
7
1
eqtr4di
⊢
k
=
K
→
Base
k
=
B
9
6
8
fveq12d
⊢
k
=
K
→
lub
⁡
k
⁡
Base
k
=
U
⁡
B
10
df-p1
⊢
1.
=
k
∈
V
⟼
lub
⁡
k
⁡
Base
k
11
fvex
⊢
U
⁡
B
∈
V
12
9
10
11
fvmpt
⊢
K
∈
V
→
1.
⁡
K
=
U
⁡
B
13
3
12
eqtrid
⊢
K
∈
V
→
1
˙
=
U
⁡
B
14
4
13
syl
⊢
K
∈
V
→
1
˙
=
U
⁡
B