Metamath Proof Explorer


Theorem p1val

Description: Value of poset zero. (Contributed by NM, 22-Oct-2011)

Ref Expression
Hypotheses p1val.b B = Base K
p1val.u U = lub K
p1val.t 1 ˙ = 1. K
Assertion p1val K V 1 ˙ = U B

Proof

Step Hyp Ref Expression
1 p1val.b B = Base K
2 p1val.u U = lub K
3 p1val.t 1 ˙ = 1. K
4 elex K V K V
5 fveq2 k = K lub k = lub K
6 5 2 eqtr4di k = K lub k = U
7 fveq2 k = K Base k = Base K
8 7 1 eqtr4di k = K Base k = B
9 6 8 fveq12d k = K lub k Base k = U B
10 df-p1 1. = k V lub k Base k
11 fvex U B V
12 9 10 11 fvmpt K V 1. K = U B
13 3 12 eqtrid K V 1 ˙ = U B
14 4 13 syl K V 1 ˙ = U B