Metamath Proof Explorer


Theorem padd01

Description: Projective subspace sum with an empty set. (Contributed by NM, 11-Jan-2012)

Ref Expression
Hypotheses padd0.a A = Atoms K
padd0.p + ˙ = + 𝑃 K
Assertion padd01 K B X A X + ˙ = X

Proof

Step Hyp Ref Expression
1 padd0.a A = Atoms K
2 padd0.p + ˙ = + 𝑃 K
3 simpl K B X A K B
4 simpr K B X A X A
5 0ss A
6 5 a1i K B X A A
7 3 4 6 3jca K B X A K B X A A
8 neirr ¬
9 8 intnan ¬ X
10 1 2 paddval0 K B X A A ¬ X X + ˙ = X
11 7 9 10 sylancl K B X A X + ˙ = X
12 un0 X = X
13 11 12 eqtrdi K B X A X + ˙ = X