Metamath Proof Explorer


Theorem paddasslem1

Description: Lemma for paddass . (Contributed by NM, 8-Jan-2012)

Ref Expression
Hypotheses paddasslem.l ˙ = K
paddasslem.j ˙ = join K
paddasslem.a A = Atoms K
Assertion paddasslem1 K HL x A r A y A x y ¬ r ˙ x ˙ y ¬ x ˙ r ˙ y

Proof

Step Hyp Ref Expression
1 paddasslem.l ˙ = K
2 paddasslem.j ˙ = join K
3 paddasslem.a A = Atoms K
4 1 2 3 hlatexch2 K HL x A r A y A x y x ˙ r ˙ y r ˙ x ˙ y
5 4 con3dimp K HL x A r A y A x y ¬ r ˙ x ˙ y ¬ x ˙ r ˙ y