Description: Lemma for paddass . Use paddasslem4 to eliminate s from paddasslem9 . (Contributed by NM, 9-Jan-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | paddasslem.l | |
|
paddasslem.j | |
||
paddasslem.a | |
||
paddasslem.p | |
||
Assertion | paddasslem10 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | paddasslem.l | |
|
2 | paddasslem.j | |
|
3 | paddasslem.a | |
|
4 | paddasslem.p | |
|
5 | simpl11 | |
|
6 | simpl3l | |
|
7 | simpl3r | |
|
8 | 5 6 7 | 3jca | |
9 | an6 | |
|
10 | ssel2 | |
|
11 | ssel2 | |
|
12 | ssel2 | |
|
13 | 10 11 12 | 3anim123i | |
14 | 9 13 | sylbi | |
15 | 14 | 3ad2antl2 | |
16 | 15 | adantrr | |
17 | simpl12 | |
|
18 | simpl13 | |
|
19 | simprr1 | |
|
20 | 17 18 19 | 3jca | |
21 | simprr2 | |
|
22 | simprr3 | |
|
23 | 1 2 3 | paddasslem4 | |
24 | 8 16 20 21 22 23 | syl32anc | |
25 | simpl2 | |
|
26 | simpl3 | |
|
27 | 5 25 26 | 3jca | |
28 | 27 | adantr | |
29 | simplrl | |
|
30 | 19 22 | jca | |
31 | 30 | adantr | |
32 | simprl | |
|
33 | simprrl | |
|
34 | simprrr | |
|
35 | 32 33 34 | 3jca | |
36 | 1 2 3 4 | paddasslem9 | |
37 | 28 29 31 35 36 | syl13anc | |
38 | 24 37 | rexlimddv | |