Metamath Proof Explorer


Theorem paddasslem10

Description: Lemma for paddass . Use paddasslem4 to eliminate s from paddasslem9 . (Contributed by NM, 9-Jan-2012)

Ref Expression
Hypotheses paddasslem.l ˙=K
paddasslem.j ˙=joinK
paddasslem.a A=AtomsK
paddasslem.p +˙=+𝑃K
Assertion paddasslem10 KHLpzxyXAYAZApArAxXyYzZ¬r˙x˙yp˙x˙rr˙y˙zpX+˙Y+˙Z

Proof

Step Hyp Ref Expression
1 paddasslem.l ˙=K
2 paddasslem.j ˙=joinK
3 paddasslem.a A=AtomsK
4 paddasslem.p +˙=+𝑃K
5 simpl11 KHLpzxyXAYAZApArAxXyYzZ¬r˙x˙yp˙x˙rr˙y˙zKHL
6 simpl3l KHLpzxyXAYAZApArAxXyYzZ¬r˙x˙yp˙x˙rr˙y˙zpA
7 simpl3r KHLpzxyXAYAZApArAxXyYzZ¬r˙x˙yp˙x˙rr˙y˙zrA
8 5 6 7 3jca KHLpzxyXAYAZApArAxXyYzZ¬r˙x˙yp˙x˙rr˙y˙zKHLpArA
9 an6 XAYAZAxXyYzZXAxXYAyYZAzZ
10 ssel2 XAxXxA
11 ssel2 YAyYyA
12 ssel2 ZAzZzA
13 10 11 12 3anim123i XAxXYAyYZAzZxAyAzA
14 9 13 sylbi XAYAZAxXyYzZxAyAzA
15 14 3ad2antl2 KHLpzxyXAYAZApArAxXyYzZxAyAzA
16 15 adantrr KHLpzxyXAYAZApArAxXyYzZ¬r˙x˙yp˙x˙rr˙y˙zxAyAzA
17 simpl12 KHLpzxyXAYAZApArAxXyYzZ¬r˙x˙yp˙x˙rr˙y˙zpz
18 simpl13 KHLpzxyXAYAZApArAxXyYzZ¬r˙x˙yp˙x˙rr˙y˙zxy
19 simprr1 KHLpzxyXAYAZApArAxXyYzZ¬r˙x˙yp˙x˙rr˙y˙z¬r˙x˙y
20 17 18 19 3jca KHLpzxyXAYAZApArAxXyYzZ¬r˙x˙yp˙x˙rr˙y˙zpzxy¬r˙x˙y
21 simprr2 KHLpzxyXAYAZApArAxXyYzZ¬r˙x˙yp˙x˙rr˙y˙zp˙x˙r
22 simprr3 KHLpzxyXAYAZApArAxXyYzZ¬r˙x˙yp˙x˙rr˙y˙zr˙y˙z
23 1 2 3 paddasslem4 KHLpArAxAyAzApzxy¬r˙x˙yp˙x˙rr˙y˙zsAs˙x˙ys˙p˙z
24 8 16 20 21 22 23 syl32anc KHLpzxyXAYAZApArAxXyYzZ¬r˙x˙yp˙x˙rr˙y˙zsAs˙x˙ys˙p˙z
25 simpl2 KHLpzxyXAYAZApArAxXyYzZ¬r˙x˙yp˙x˙rr˙y˙zXAYAZA
26 simpl3 KHLpzxyXAYAZApArAxXyYzZ¬r˙x˙yp˙x˙rr˙y˙zpArA
27 5 25 26 3jca KHLpzxyXAYAZApArAxXyYzZ¬r˙x˙yp˙x˙rr˙y˙zKHLXAYAZApArA
28 27 adantr KHLpzxyXAYAZApArAxXyYzZ¬r˙x˙yp˙x˙rr˙y˙zsAs˙x˙ys˙p˙zKHLXAYAZApArA
29 simplrl KHLpzxyXAYAZApArAxXyYzZ¬r˙x˙yp˙x˙rr˙y˙zsAs˙x˙ys˙p˙zxXyYzZ
30 19 22 jca KHLpzxyXAYAZApArAxXyYzZ¬r˙x˙yp˙x˙rr˙y˙z¬r˙x˙yr˙y˙z
31 30 adantr KHLpzxyXAYAZApArAxXyYzZ¬r˙x˙yp˙x˙rr˙y˙zsAs˙x˙ys˙p˙z¬r˙x˙yr˙y˙z
32 simprl KHLpzxyXAYAZApArAxXyYzZ¬r˙x˙yp˙x˙rr˙y˙zsAs˙x˙ys˙p˙zsA
33 simprrl KHLpzxyXAYAZApArAxXyYzZ¬r˙x˙yp˙x˙rr˙y˙zsAs˙x˙ys˙p˙zs˙x˙y
34 simprrr KHLpzxyXAYAZApArAxXyYzZ¬r˙x˙yp˙x˙rr˙y˙zsAs˙x˙ys˙p˙zs˙p˙z
35 32 33 34 3jca KHLpzxyXAYAZApArAxXyYzZ¬r˙x˙yp˙x˙rr˙y˙zsAs˙x˙ys˙p˙zsAs˙x˙ys˙p˙z
36 1 2 3 4 paddasslem9 KHLXAYAZApArAxXyYzZ¬r˙x˙yr˙y˙zsAs˙x˙ys˙p˙zpX+˙Y+˙Z
37 28 29 31 35 36 syl13anc KHLpzxyXAYAZApArAxXyYzZ¬r˙x˙yp˙x˙rr˙y˙zsAs˙x˙ys˙p˙zpX+˙Y+˙Z
38 24 37 rexlimddv KHLpzxyXAYAZApArAxXyYzZ¬r˙x˙yp˙x˙rr˙y˙zpX+˙Y+˙Z