Metamath Proof Explorer


Theorem paddasslem11

Description: Lemma for paddass . The case when p = z . (Contributed by NM, 11-Jan-2012)

Ref Expression
Hypotheses paddasslem.l ˙ = K
paddasslem.j ˙ = join K
paddasslem.a A = Atoms K
paddasslem.p + ˙ = + 𝑃 K
Assertion paddasslem11 K HL p = z X A Y A Z A z Z p X + ˙ Y + ˙ Z

Proof

Step Hyp Ref Expression
1 paddasslem.l ˙ = K
2 paddasslem.j ˙ = join K
3 paddasslem.a A = Atoms K
4 paddasslem.p + ˙ = + 𝑃 K
5 simplll K HL p = z X A Y A Z A z Z K HL
6 simplr3 K HL p = z X A Y A Z A z Z Z A
7 simplr1 K HL p = z X A Y A Z A z Z X A
8 simplr2 K HL p = z X A Y A Z A z Z Y A
9 3 4 paddssat K HL X A Y A X + ˙ Y A
10 5 7 8 9 syl3anc K HL p = z X A Y A Z A z Z X + ˙ Y A
11 3 4 sspadd2 K HL Z A X + ˙ Y A Z X + ˙ Y + ˙ Z
12 5 6 10 11 syl3anc K HL p = z X A Y A Z A z Z Z X + ˙ Y + ˙ Z
13 simpllr K HL p = z X A Y A Z A z Z p = z
14 simpr K HL p = z X A Y A Z A z Z z Z
15 13 14 eqeltrd K HL p = z X A Y A Z A z Z p Z
16 12 15 sseldd K HL p = z X A Y A Z A z Z p X + ˙ Y + ˙ Z