Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
paddasslem11
Next ⟩
paddasslem12
Metamath Proof Explorer
Ascii
Unicode
Theorem
paddasslem11
Description:
Lemma for
paddass
. The case when
p = z
.
(Contributed by
NM
, 11-Jan-2012)
Ref
Expression
Hypotheses
paddasslem.l
⊢
≤
˙
=
≤
K
paddasslem.j
⊢
∨
˙
=
join
⁡
K
paddasslem.a
⊢
A
=
Atoms
⁡
K
paddasslem.p
⊢
+
˙
=
+
𝑃
⁡
K
Assertion
paddasslem11
⊢
K
∈
HL
∧
p
=
z
∧
X
⊆
A
∧
Y
⊆
A
∧
Z
⊆
A
∧
z
∈
Z
→
p
∈
X
+
˙
Y
+
˙
Z
Proof
Step
Hyp
Ref
Expression
1
paddasslem.l
⊢
≤
˙
=
≤
K
2
paddasslem.j
⊢
∨
˙
=
join
⁡
K
3
paddasslem.a
⊢
A
=
Atoms
⁡
K
4
paddasslem.p
⊢
+
˙
=
+
𝑃
⁡
K
5
simplll
⊢
K
∈
HL
∧
p
=
z
∧
X
⊆
A
∧
Y
⊆
A
∧
Z
⊆
A
∧
z
∈
Z
→
K
∈
HL
6
simplr3
⊢
K
∈
HL
∧
p
=
z
∧
X
⊆
A
∧
Y
⊆
A
∧
Z
⊆
A
∧
z
∈
Z
→
Z
⊆
A
7
simplr1
⊢
K
∈
HL
∧
p
=
z
∧
X
⊆
A
∧
Y
⊆
A
∧
Z
⊆
A
∧
z
∈
Z
→
X
⊆
A
8
simplr2
⊢
K
∈
HL
∧
p
=
z
∧
X
⊆
A
∧
Y
⊆
A
∧
Z
⊆
A
∧
z
∈
Z
→
Y
⊆
A
9
3
4
paddssat
⊢
K
∈
HL
∧
X
⊆
A
∧
Y
⊆
A
→
X
+
˙
Y
⊆
A
10
5
7
8
9
syl3anc
⊢
K
∈
HL
∧
p
=
z
∧
X
⊆
A
∧
Y
⊆
A
∧
Z
⊆
A
∧
z
∈
Z
→
X
+
˙
Y
⊆
A
11
3
4
sspadd2
⊢
K
∈
HL
∧
Z
⊆
A
∧
X
+
˙
Y
⊆
A
→
Z
⊆
X
+
˙
Y
+
˙
Z
12
5
6
10
11
syl3anc
⊢
K
∈
HL
∧
p
=
z
∧
X
⊆
A
∧
Y
⊆
A
∧
Z
⊆
A
∧
z
∈
Z
→
Z
⊆
X
+
˙
Y
+
˙
Z
13
simpllr
⊢
K
∈
HL
∧
p
=
z
∧
X
⊆
A
∧
Y
⊆
A
∧
Z
⊆
A
∧
z
∈
Z
→
p
=
z
14
simpr
⊢
K
∈
HL
∧
p
=
z
∧
X
⊆
A
∧
Y
⊆
A
∧
Z
⊆
A
∧
z
∈
Z
→
z
∈
Z
15
13
14
eqeltrd
⊢
K
∈
HL
∧
p
=
z
∧
X
⊆
A
∧
Y
⊆
A
∧
Z
⊆
A
∧
z
∈
Z
→
p
∈
Z
16
12
15
sseldd
⊢
K
∈
HL
∧
p
=
z
∧
X
⊆
A
∧
Y
⊆
A
∧
Z
⊆
A
∧
z
∈
Z
→
p
∈
X
+
˙
Y
+
˙
Z