Step |
Hyp |
Ref |
Expression |
1 |
|
paddasslem.l |
|
2 |
|
paddasslem.j |
|
3 |
|
paddasslem.a |
|
4 |
|
paddasslem.p |
|
5 |
|
simpl1l |
|
6 |
|
simpl21 |
|
7 |
|
simpl22 |
|
8 |
3 4
|
paddssat |
|
9 |
5 6 7 8
|
syl3anc |
|
10 |
|
simpl23 |
|
11 |
5 9 10
|
3jca |
|
12 |
3 4
|
sspadd2 |
|
13 |
5 7 6 12
|
syl3anc |
|
14 |
3 4
|
paddss1 |
|
15 |
11 13 14
|
sylc |
|
16 |
5
|
hllatd |
|
17 |
|
simprll |
|
18 |
|
simprlr |
|
19 |
|
simpl3l |
|
20 |
|
eqid |
|
21 |
20 3
|
atbase |
|
22 |
19 21
|
syl |
|
23 |
7 17
|
sseldd |
|
24 |
20 3
|
atbase |
|
25 |
23 24
|
syl |
|
26 |
|
simpl3r |
|
27 |
20 3
|
atbase |
|
28 |
26 27
|
syl |
|
29 |
20 2
|
latjcl |
|
30 |
16 25 28 29
|
syl3anc |
|
31 |
10 18
|
sseldd |
|
32 |
20 3
|
atbase |
|
33 |
31 32
|
syl |
|
34 |
20 2
|
latjcl |
|
35 |
16 25 33 34
|
syl3anc |
|
36 |
|
simpl1r |
|
37 |
|
simprrl |
|
38 |
|
oveq1 |
|
39 |
38
|
breq2d |
|
40 |
39
|
biimpa |
|
41 |
36 37 40
|
syl2anc |
|
42 |
20 1 2
|
latlej1 |
|
43 |
16 25 33 42
|
syl3anc |
|
44 |
|
simprrr |
|
45 |
20 1 2
|
latjle12 |
|
46 |
16 25 28 35 45
|
syl13anc |
|
47 |
43 44 46
|
mpbi2and |
|
48 |
20 1 16 22 30 35 41 47
|
lattrd |
|
49 |
1 2 3 4
|
elpaddri |
|
50 |
16 7 10 17 18 19 48 49
|
syl322anc |
|
51 |
15 50
|
sseldd |
|