Step |
Hyp |
Ref |
Expression |
1 |
|
paddasslem.l |
|
2 |
|
paddasslem.j |
|
3 |
|
paddasslem.a |
|
4 |
|
breq1 |
|
5 |
4
|
biimpac |
|
6 |
|
eqid |
|
7 |
|
simpll1 |
|
8 |
7
|
hllatd |
|
9 |
|
simpll2 |
|
10 |
6 3
|
atbase |
|
11 |
9 10
|
syl |
|
12 |
|
simp32 |
|
13 |
12
|
ad2antrr |
|
14 |
6 3
|
atbase |
|
15 |
13 14
|
syl |
|
16 |
|
simp33 |
|
17 |
16
|
ad2antrr |
|
18 |
6 3
|
atbase |
|
19 |
17 18
|
syl |
|
20 |
6 2
|
latjcl |
|
21 |
8 15 19 20
|
syl3anc |
|
22 |
|
simp31 |
|
23 |
22
|
ad2antrr |
|
24 |
6 3
|
atbase |
|
25 |
23 24
|
syl |
|
26 |
6 2
|
latjcl |
|
27 |
8 25 15 26
|
syl3anc |
|
28 |
|
simplr |
|
29 |
1 2 3
|
hlatlej2 |
|
30 |
7 23 13 29
|
syl3anc |
|
31 |
|
simpr |
|
32 |
6 1 2
|
latjle12 |
|
33 |
32
|
biimpd |
|
34 |
8 15 19 27 33
|
syl13anc |
|
35 |
30 31 34
|
mp2and |
|
36 |
6 1 8 11 21 27 28 35
|
lattrd |
|
37 |
36
|
ex |
|
38 |
5 37
|
syl5 |
|
39 |
38
|
expdimp |
|
40 |
39
|
necon3bd |
|
41 |
40
|
exp31 |
|
42 |
41
|
com23 |
|
43 |
42
|
com24 |
|
44 |
43
|
3imp2 |
|