Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
paddasslem6
Next ⟩
paddasslem7
Metamath Proof Explorer
Ascii
Unicode
Theorem
paddasslem6
Description:
Lemma for
paddass
.
(Contributed by
NM
, 8-Jan-2012)
Ref
Expression
Hypotheses
paddasslem.l
⊢
≤
˙
=
≤
K
paddasslem.j
⊢
∨
˙
=
join
⁡
K
paddasslem.a
⊢
A
=
Atoms
⁡
K
Assertion
paddasslem6
⊢
K
∈
HL
∧
p
∈
A
∧
s
∈
A
∧
z
∈
A
∧
s
≠
z
∧
s
≤
˙
p
∨
˙
z
→
p
≤
˙
s
∨
˙
z
Proof
Step
Hyp
Ref
Expression
1
paddasslem.l
⊢
≤
˙
=
≤
K
2
paddasslem.j
⊢
∨
˙
=
join
⁡
K
3
paddasslem.a
⊢
A
=
Atoms
⁡
K
4
simpl1
⊢
K
∈
HL
∧
p
∈
A
∧
s
∈
A
∧
z
∈
A
∧
s
≠
z
∧
s
≤
˙
p
∨
˙
z
→
K
∈
HL
5
simpl2r
⊢
K
∈
HL
∧
p
∈
A
∧
s
∈
A
∧
z
∈
A
∧
s
≠
z
∧
s
≤
˙
p
∨
˙
z
→
s
∈
A
6
simpl2l
⊢
K
∈
HL
∧
p
∈
A
∧
s
∈
A
∧
z
∈
A
∧
s
≠
z
∧
s
≤
˙
p
∨
˙
z
→
p
∈
A
7
simpl3
⊢
K
∈
HL
∧
p
∈
A
∧
s
∈
A
∧
z
∈
A
∧
s
≠
z
∧
s
≤
˙
p
∨
˙
z
→
z
∈
A
8
5
6
7
3jca
⊢
K
∈
HL
∧
p
∈
A
∧
s
∈
A
∧
z
∈
A
∧
s
≠
z
∧
s
≤
˙
p
∨
˙
z
→
s
∈
A
∧
p
∈
A
∧
z
∈
A
9
simprl
⊢
K
∈
HL
∧
p
∈
A
∧
s
∈
A
∧
z
∈
A
∧
s
≠
z
∧
s
≤
˙
p
∨
˙
z
→
s
≠
z
10
4
8
9
3jca
⊢
K
∈
HL
∧
p
∈
A
∧
s
∈
A
∧
z
∈
A
∧
s
≠
z
∧
s
≤
˙
p
∨
˙
z
→
K
∈
HL
∧
s
∈
A
∧
p
∈
A
∧
z
∈
A
∧
s
≠
z
11
simprr
⊢
K
∈
HL
∧
p
∈
A
∧
s
∈
A
∧
z
∈
A
∧
s
≠
z
∧
s
≤
˙
p
∨
˙
z
→
s
≤
˙
p
∨
˙
z
12
1
2
3
hlatexch2
⊢
K
∈
HL
∧
s
∈
A
∧
p
∈
A
∧
z
∈
A
∧
s
≠
z
→
s
≤
˙
p
∨
˙
z
→
p
≤
˙
s
∨
˙
z
13
10
11
12
sylc
⊢
K
∈
HL
∧
p
∈
A
∧
s
∈
A
∧
z
∈
A
∧
s
≠
z
∧
s
≤
˙
p
∨
˙
z
→
p
≤
˙
s
∨
˙
z