Metamath Proof Explorer


Theorem paddasslem6

Description: Lemma for paddass . (Contributed by NM, 8-Jan-2012)

Ref Expression
Hypotheses paddasslem.l ˙ = K
paddasslem.j ˙ = join K
paddasslem.a A = Atoms K
Assertion paddasslem6 K HL p A s A z A s z s ˙ p ˙ z p ˙ s ˙ z

Proof

Step Hyp Ref Expression
1 paddasslem.l ˙ = K
2 paddasslem.j ˙ = join K
3 paddasslem.a A = Atoms K
4 simpl1 K HL p A s A z A s z s ˙ p ˙ z K HL
5 simpl2r K HL p A s A z A s z s ˙ p ˙ z s A
6 simpl2l K HL p A s A z A s z s ˙ p ˙ z p A
7 simpl3 K HL p A s A z A s z s ˙ p ˙ z z A
8 5 6 7 3jca K HL p A s A z A s z s ˙ p ˙ z s A p A z A
9 simprl K HL p A s A z A s z s ˙ p ˙ z s z
10 4 8 9 3jca K HL p A s A z A s z s ˙ p ˙ z K HL s A p A z A s z
11 simprr K HL p A s A z A s z s ˙ p ˙ z s ˙ p ˙ z
12 1 2 3 hlatexch2 K HL s A p A z A s z s ˙ p ˙ z p ˙ s ˙ z
13 10 11 12 sylc K HL p A s A z A s z s ˙ p ˙ z p ˙ s ˙ z