Metamath Proof Explorer


Theorem paddasslem8

Description: Lemma for paddass . (Contributed by NM, 8-Jan-2012)

Ref Expression
Hypotheses paddasslem.l ˙=K
paddasslem.j ˙=joinK
paddasslem.a A=AtomsK
paddasslem.p +˙=+𝑃K
Assertion paddasslem8 KHLXAYAZApAsAxXyYzZs˙x˙yp˙s˙zpX+˙Y+˙Z

Proof

Step Hyp Ref Expression
1 paddasslem.l ˙=K
2 paddasslem.j ˙=joinK
3 paddasslem.a A=AtomsK
4 paddasslem.p +˙=+𝑃K
5 simpl1 KHLXAYAZApAsAxXyYzZs˙x˙yp˙s˙zKHL
6 5 hllatd KHLXAYAZApAsAxXyYzZs˙x˙yp˙s˙zKLat
7 simpl21 KHLXAYAZApAsAxXyYzZs˙x˙yp˙s˙zXA
8 simpl22 KHLXAYAZApAsAxXyYzZs˙x˙yp˙s˙zYA
9 3 4 paddssat KHLXAYAX+˙YA
10 5 7 8 9 syl3anc KHLXAYAZApAsAxXyYzZs˙x˙yp˙s˙zX+˙YA
11 simpl23 KHLXAYAZApAsAxXyYzZs˙x˙yp˙s˙zZA
12 simpr11 KHLXAYAZApAsAxXyYzZs˙x˙yp˙s˙zxX
13 simpr12 KHLXAYAZApAsAxXyYzZs˙x˙yp˙s˙zyY
14 simpl3r KHLXAYAZApAsAxXyYzZs˙x˙yp˙s˙zsA
15 simpr2 KHLXAYAZApAsAxXyYzZs˙x˙yp˙s˙zs˙x˙y
16 1 2 3 4 elpaddri KLatXAYAxXyYsAs˙x˙ysX+˙Y
17 6 7 8 12 13 14 15 16 syl322anc KHLXAYAZApAsAxXyYzZs˙x˙yp˙s˙zsX+˙Y
18 simpr13 KHLXAYAZApAsAxXyYzZs˙x˙yp˙s˙zzZ
19 simpl3l KHLXAYAZApAsAxXyYzZs˙x˙yp˙s˙zpA
20 simpr3 KHLXAYAZApAsAxXyYzZs˙x˙yp˙s˙zp˙s˙z
21 1 2 3 4 elpaddri KLatX+˙YAZAsX+˙YzZpAp˙s˙zpX+˙Y+˙Z
22 6 10 11 17 18 19 20 21 syl322anc KHLXAYAZApAsAxXyYzZs˙x˙yp˙s˙zpX+˙Y+˙Z