Metamath Proof Explorer


Theorem paddatclN

Description: The projective sum of a closed subspace and an atom is a closed projective subspace. (Contributed by NM, 3-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses paddatcl.a A = Atoms K
paddatcl.p + ˙ = + 𝑃 K
paddatcl.c C = PSubCl K
Assertion paddatclN K HL X C Q A X + ˙ Q C

Proof

Step Hyp Ref Expression
1 paddatcl.a A = Atoms K
2 paddatcl.p + ˙ = + 𝑃 K
3 paddatcl.c C = PSubCl K
4 hlclat K HL K CLat
5 4 3ad2ant1 K HL X C Q A K CLat
6 1 3 psubclssatN K HL X C X A
7 eqid Base K = Base K
8 7 1 atssbase A Base K
9 6 8 sstrdi K HL X C X Base K
10 9 3adant3 K HL X C Q A X Base K
11 eqid lub K = lub K
12 7 11 clatlubcl K CLat X Base K lub K X Base K
13 5 10 12 syl2anc K HL X C Q A lub K X Base K
14 eqid join K = join K
15 eqid pmap K = pmap K
16 7 14 1 15 2 pmapjat1 K HL lub K X Base K Q A pmap K lub K X join K Q = pmap K lub K X + ˙ pmap K Q
17 13 16 syld3an2 K HL X C Q A pmap K lub K X join K Q = pmap K lub K X + ˙ pmap K Q
18 11 15 3 pmapidclN K HL X C pmap K lub K X = X
19 18 3adant3 K HL X C Q A pmap K lub K X = X
20 1 15 pmapat K HL Q A pmap K Q = Q
21 20 3adant2 K HL X C Q A pmap K Q = Q
22 19 21 oveq12d K HL X C Q A pmap K lub K X + ˙ pmap K Q = X + ˙ Q
23 17 22 eqtr2d K HL X C Q A X + ˙ Q = pmap K lub K X join K Q
24 simp1 K HL X C Q A K HL
25 hllat K HL K Lat
26 25 3ad2ant1 K HL X C Q A K Lat
27 7 1 atbase Q A Q Base K
28 27 3ad2ant3 K HL X C Q A Q Base K
29 7 14 latjcl K Lat lub K X Base K Q Base K lub K X join K Q Base K
30 26 13 28 29 syl3anc K HL X C Q A lub K X join K Q Base K
31 7 15 3 pmapsubclN K HL lub K X join K Q Base K pmap K lub K X join K Q C
32 24 30 31 syl2anc K HL X C Q A pmap K lub K X join K Q C
33 23 32 eqeltrd K HL X C Q A X + ˙ Q C