Metamath Proof Explorer


Theorem paddfval

Description: Projective subspace sum operation. (Contributed by NM, 29-Dec-2011)

Ref Expression
Hypotheses paddfval.l ˙ = K
paddfval.j ˙ = join K
paddfval.a A = Atoms K
paddfval.p + ˙ = + 𝑃 K
Assertion paddfval K B + ˙ = m 𝒫 A , n 𝒫 A m n p A | q m r n p ˙ q ˙ r

Proof

Step Hyp Ref Expression
1 paddfval.l ˙ = K
2 paddfval.j ˙ = join K
3 paddfval.a A = Atoms K
4 paddfval.p + ˙ = + 𝑃 K
5 elex K B K V
6 fveq2 h = K Atoms h = Atoms K
7 6 3 eqtr4di h = K Atoms h = A
8 7 pweqd h = K 𝒫 Atoms h = 𝒫 A
9 eqidd h = K p = p
10 fveq2 h = K h = K
11 10 1 eqtr4di h = K h = ˙
12 fveq2 h = K join h = join K
13 12 2 eqtr4di h = K join h = ˙
14 13 oveqd h = K q join h r = q ˙ r
15 9 11 14 breq123d h = K p h q join h r p ˙ q ˙ r
16 15 2rexbidv h = K q m r n p h q join h r q m r n p ˙ q ˙ r
17 7 16 rabeqbidv h = K p Atoms h | q m r n p h q join h r = p A | q m r n p ˙ q ˙ r
18 17 uneq2d h = K m n p Atoms h | q m r n p h q join h r = m n p A | q m r n p ˙ q ˙ r
19 8 8 18 mpoeq123dv h = K m 𝒫 Atoms h , n 𝒫 Atoms h m n p Atoms h | q m r n p h q join h r = m 𝒫 A , n 𝒫 A m n p A | q m r n p ˙ q ˙ r
20 df-padd + 𝑃 = h V m 𝒫 Atoms h , n 𝒫 Atoms h m n p Atoms h | q m r n p h q join h r
21 3 fvexi A V
22 21 pwex 𝒫 A V
23 22 22 mpoex m 𝒫 A , n 𝒫 A m n p A | q m r n p ˙ q ˙ r V
24 19 20 23 fvmpt K V + 𝑃 K = m 𝒫 A , n 𝒫 A m n p A | q m r n p ˙ q ˙ r
25 4 24 syl5eq K V + ˙ = m 𝒫 A , n 𝒫 A m n p A | q m r n p ˙ q ˙ r
26 5 25 syl K B + ˙ = m 𝒫 A , n 𝒫 A m n p A | q m r n p ˙ q ˙ r