Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
paddssat
Next ⟩
sspadd1
Metamath Proof Explorer
Ascii
Unicode
Theorem
paddssat
Description:
A projective subspace sum is a set of atoms.
(Contributed by
NM
, 3-Jan-2012)
Ref
Expression
Hypotheses
padd0.a
⊢
A
=
Atoms
⁡
K
padd0.p
⊢
+
˙
=
+
𝑃
⁡
K
Assertion
paddssat
⊢
K
∈
B
∧
X
⊆
A
∧
Y
⊆
A
→
X
+
˙
Y
⊆
A
Proof
Step
Hyp
Ref
Expression
1
padd0.a
⊢
A
=
Atoms
⁡
K
2
padd0.p
⊢
+
˙
=
+
𝑃
⁡
K
3
eqid
⊢
≤
K
=
≤
K
4
eqid
⊢
join
⁡
K
=
join
⁡
K
5
3
4
1
2
paddval
⊢
K
∈
B
∧
X
⊆
A
∧
Y
⊆
A
→
X
+
˙
Y
=
X
∪
Y
∪
p
∈
A
|
∃
q
∈
X
∃
r
∈
Y
p
≤
K
q
join
⁡
K
r
6
unss
⊢
X
⊆
A
∧
Y
⊆
A
↔
X
∪
Y
⊆
A
7
6
biimpi
⊢
X
⊆
A
∧
Y
⊆
A
→
X
∪
Y
⊆
A
8
ssrab2
⊢
p
∈
A
|
∃
q
∈
X
∃
r
∈
Y
p
≤
K
q
join
⁡
K
r
⊆
A
9
7
8
jctir
⊢
X
⊆
A
∧
Y
⊆
A
→
X
∪
Y
⊆
A
∧
p
∈
A
|
∃
q
∈
X
∃
r
∈
Y
p
≤
K
q
join
⁡
K
r
⊆
A
10
unss
⊢
X
∪
Y
⊆
A
∧
p
∈
A
|
∃
q
∈
X
∃
r
∈
Y
p
≤
K
q
join
⁡
K
r
⊆
A
↔
X
∪
Y
∪
p
∈
A
|
∃
q
∈
X
∃
r
∈
Y
p
≤
K
q
join
⁡
K
r
⊆
A
11
9
10
sylib
⊢
X
⊆
A
∧
Y
⊆
A
→
X
∪
Y
∪
p
∈
A
|
∃
q
∈
X
∃
r
∈
Y
p
≤
K
q
join
⁡
K
r
⊆
A
12
11
3adant1
⊢
K
∈
B
∧
X
⊆
A
∧
Y
⊆
A
→
X
∪
Y
∪
p
∈
A
|
∃
q
∈
X
∃
r
∈
Y
p
≤
K
q
join
⁡
K
r
⊆
A
13
5
12
eqsstrd
⊢
K
∈
B
∧
X
⊆
A
∧
Y
⊆
A
→
X
+
˙
Y
⊆
A