Metamath Proof Explorer


Theorem paddval0

Description: Projective subspace sum with at least one empty set. (Contributed by NM, 11-Jan-2012)

Ref Expression
Hypotheses padd0.a A = Atoms K
padd0.p + ˙ = + 𝑃 K
Assertion paddval0 K B X A Y A ¬ X Y X + ˙ Y = X Y

Proof

Step Hyp Ref Expression
1 padd0.a A = Atoms K
2 padd0.p + ˙ = + 𝑃 K
3 1 2 elpadd0 K B X A Y A ¬ X Y q X + ˙ Y q X q Y
4 elun q X Y q X q Y
5 3 4 bitr4di K B X A Y A ¬ X Y q X + ˙ Y q X Y
6 5 eqrdv K B X A Y A ¬ X Y X + ˙ Y = X Y