| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qrng.q |
|
| 2 |
|
qabsabv.a |
|
| 3 |
|
padic.j |
|
| 4 |
3
|
padicval |
|
| 5 |
4
|
adantlr |
|
| 6 |
5
|
oveq1d |
|
| 7 |
|
ovif |
|
| 8 |
|
rpre |
|
| 9 |
8
|
adantl |
|
| 10 |
9
|
recnd |
|
| 11 |
|
rpne0 |
|
| 12 |
11
|
adantl |
|
| 13 |
10 12
|
0cxpd |
|
| 14 |
13
|
adantr |
|
| 15 |
14
|
ifeq1d |
|
| 16 |
7 15
|
eqtrid |
|
| 17 |
|
df-ne |
|
| 18 |
|
pcqcl |
|
| 19 |
18
|
adantlr |
|
| 20 |
19
|
zcnd |
|
| 21 |
10
|
adantr |
|
| 22 |
|
mulneg12 |
|
| 23 |
20 21 22
|
syl2anc |
|
| 24 |
21
|
negcld |
|
| 25 |
20 24
|
mulcomd |
|
| 26 |
23 25
|
eqtrd |
|
| 27 |
26
|
oveq2d |
|
| 28 |
|
prmuz2 |
|
| 29 |
28
|
adantr |
|
| 30 |
|
eluz2b2 |
|
| 31 |
29 30
|
sylib |
|
| 32 |
31
|
simpld |
|
| 33 |
32
|
nnrpd |
|
| 34 |
33
|
adantr |
|
| 35 |
19
|
znegcld |
|
| 36 |
35
|
zred |
|
| 37 |
34 36 21
|
cxpmuld |
|
| 38 |
9
|
renegcld |
|
| 39 |
38
|
adantr |
|
| 40 |
34 39 20
|
cxpmuld |
|
| 41 |
27 37 40
|
3eqtr3d |
|
| 42 |
32
|
nnred |
|
| 43 |
42
|
recnd |
|
| 44 |
43
|
adantr |
|
| 45 |
32
|
nnne0d |
|
| 46 |
45
|
adantr |
|
| 47 |
44 46 35
|
cxpexpzd |
|
| 48 |
47
|
oveq1d |
|
| 49 |
33 38
|
rpcxpcld |
|
| 50 |
49
|
adantr |
|
| 51 |
50
|
rpcnd |
|
| 52 |
50
|
rpne0d |
|
| 53 |
51 52 19
|
cxpexpzd |
|
| 54 |
41 48 53
|
3eqtr3d |
|
| 55 |
54
|
anassrs |
|
| 56 |
17 55
|
sylan2br |
|
| 57 |
56
|
ifeq2da |
|
| 58 |
6 16 57
|
3eqtrd |
|
| 59 |
58
|
mpteq2dva |
|
| 60 |
|
rpre |
|
| 61 |
49 60
|
syl |
|
| 62 |
|
rpgt0 |
|
| 63 |
49 62
|
syl |
|
| 64 |
|
rpgt0 |
|
| 65 |
64
|
adantl |
|
| 66 |
9
|
lt0neg2d |
|
| 67 |
65 66
|
mpbid |
|
| 68 |
31
|
simprd |
|
| 69 |
|
0red |
|
| 70 |
42 68 38 69
|
cxpltd |
|
| 71 |
67 70
|
mpbid |
|
| 72 |
43
|
cxp0d |
|
| 73 |
71 72
|
breqtrd |
|
| 74 |
|
0xr |
|
| 75 |
|
1xr |
|
| 76 |
|
elioo2 |
|
| 77 |
74 75 76
|
mp2an |
|
| 78 |
61 63 73 77
|
syl3anbrc |
|
| 79 |
|
eqid |
|
| 80 |
1 2 79
|
padicabv |
|
| 81 |
78 80
|
syldan |
|
| 82 |
59 81
|
eqeltrd |
|