Metamath Proof Explorer


Theorem partim2

Description: Disjoint relation on its natural domain implies an equivalence relation on the cosets of the relation, on its natural domain, cf. partim . Lemma for petlem . (Contributed by Peter Mazsa, 17-Sep-2021)

Ref Expression
Assertion partim2 Disj R dom R / R = A EqvRel R dom R / R = A

Proof

Step Hyp Ref Expression
1 disjim Disj R EqvRel R
2 1 adantr Disj R dom R / R = A EqvRel R
3 disjdmqseq Disj R dom R / R = A dom R / R = A
4 3 biimpa Disj R dom R / R = A dom R / R = A
5 2 4 jca Disj R dom R / R = A EqvRel R dom R / R = A